ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Деление прямой на 3 равные части. Невозможность деления угла на три равные части

Деление угла на три равные части при помощи циркуля и линейки (Трисекция угла).

Аннотация:

Предлагается общий подход к решению задач о делении угла на равные части с помощью циркуля и линейки. В качестве примера показано деление угла на три равные части (Трисекция угла).

Ключевые слова:

угол; деление угла; трисекция угла.

Введение.

Трисекция угла - задача о делении заданного угла на три равные части построением циркулем и линейкой. Иначе говоря, необходимо построить трисектрисы угла - лучи, делящие угол на три равные части. Наряду с задачами о квадратуре круга и удвоении куба является одной из классических неразрешимых задач на построение, известных со времён Древней Греции.

Целью данной статьи является доказательство ошибочности выше приведённого утверждения о неразрешимости, во всяком случае, в отношении задачи о трисекции угла.

Предлагаемое решение не требует сложных построений, практически универсально и позволяет делить углы на любое количество равных частей , что в свою очередь позволяет строить любые правильные многоугольники.

Вступительная часть.

Проведём прямую линию a и построим на ней ∆CDE. Условно назовём его «базовым» (Рис.1).

Выберем на линии a произвольную точку F и проведём ещё одну прямую линию b через т.F и вершину D треугольника. На линии b возьмем две произвольные точки G и H и соединим их c точками C и E как показано на Рис.1. Анализ рисунка позволяет записать следующие очевидные соотношения между углами:

1. α 1 3 =y 1 ; α 3 5 =y 3 ; α 1 5 =y 1 +y 3 ;

2. α 2 4 =y 2 ; α 4 6 =y 4 ; α 2 6 =y 2 +y 4 ;

3. y 1 /y 2 =y 3 /y 4 ;

Пояснение1. к п.3: Пусть углы - ∟C,∟D,∟E являются углами при соответствующих вершинах базового треугольника ∆CDE. Тогда можно записать:

C+∟D+∟E=180 0 – сумма углов ∆CDE;

C+y 2 +∟D-(y 2 +y 1 )+∟E+y 1 =180 0 – сумма углов ∆CGE;

Пусть y 1 /y 2 =n или y 1 =n*y 2 , тогда,

C+y 2 +∟D-(y 2 +y 1 )+∟E+n*y 2 =180 0

Сумма углов ∆CHE:

C+(y 2 +y 4 )+∟D-(y 2 +y 4 +y 1 +y 3 )+∟E+n*(y 2 +y 4 )=180 0 , откуда

y 1 +y 3 =n*(y 2 +y 4 ) или y 1 +y 3 =n*y 2 +n*y 4 , и так как y 1 =n*y 2 ,то

y 3 =n*y 4 и следовательно y 1 /y 2 =y 3 /y 4 =n.


Далее, возьмем две произвольные точки на линии a – N и M, и проведём через них две линии c и d как показано на Рис.2. Очевидно, в том числе из ранее сказанного, что отношение изменений соответствующих углов на линиях c и d величина постоянная, т. е.: (β 1 3 )/(β 3 5 )= (β 2 4 )/(β 4 6 )= y 1 / y 3 = y 2 / y 4 ;

Деление угла на три равные части.

На окружности с центром в точке A отложим угол E 1 AE 2 =β (см. Рис. 3.1). На противоположной стороне окружности отложим симметрично три угла - CAC 1 , C 1 AC 2 , C 2 AC 3 каждый равный β. Разделим угол E 1 AE 2 , в точках K 1 ,K 3 , на три равных угла - ∟E 1 AK 1 , ∟K 1 AK 3 , ∟K 3 AE 2 равных β/3. Проведём прямые линии через точки на окружности как это показано на Рис. 3.1. Соединим прямыми линиями точки C,E 1 и C 2 ,E. (см. Рис. 3.2)

Через точку K – пересечения линий, и точку K 1 проведём прямую линию. Выберем на этой линии произвольную точку K 2 и проведём через неё две прямые из точек C и C 2 .


Не трудно заметить что Рис. 3.2, если убрать линию окружности, практически идентичен Рис. 2. (Для наглядности добавлена штриховая линия CC 2 ). Значит и все соотношения, о которых говорилось выше, применимы и здесь, а именно для углов которые необходимо разделить на три равные части справедливо соотношение y 1 /y 2 =y 3 /y 4 =1/2 (см. Пояснение 1. в вступительной части). Из рисунка 3.2 становится ясно, как поделить угол на три равных части.

Рассмотрим, в качестве примера, деление на три равных части угла β=50 0 .

Вариант 1.

На окружности с центром A откладываем циркулем симметрично относительно друг друга и диаметра CB (см. Рис 4.1) дуги C 1 C 2 =B 1 B 2 =B 2 B 3 =B 1 B 4 равные β=50 0 - относительно центра окружности. Половину дуги C 1 C 2 – CC 1 делим пополам (точка D). Проводим прямые через точки B 1 и D, и точки B 3 и C. Соединяем между собой точки B 1 и C, B 3 и C 1 . Соединяем точки пересечения – F и E, ранее проведённых линий, между собой. Полученный угол α=C 1 AG, где G точка пересечения линии FE с окружностью, равен β/3.


Вариант 2.

На окружности с центром A откладываем циркулем симметрично относительно друг друга и диаметра CB (см. Рис 4.2) дуги C 1 C 2 =B 1 B 2 =B 2 B 3 =B 1 B 4 =β=50 0 - относительно центра окружности. Соединяем между собой точки B 1 и C, B 3 и C 1 . Отложим углы y 2 =2y 1 (см. Рис 4.2) от линий B 1 C и B 3 C 1 и проведём прямые линии соответственно этим углам. Соединяем точки пересечения – F и E, ранее проведённых линий, между собой. Полученный угол α=C 1 AG≈16.67 0 , где G точка пересечения линии FE с окружностью, равен β/3.


Полное построение деления угла на три равных части (на примере угла β=50 0 ) показано на Рис.5


Деление угла на нечётное количество (>3-х) равных углов.

В качестве примера рассмотрим деление угла β=35 0 на пять равных между собой углов.

Способ №1.

На окружности с центром A откладываем циркулем симметрично относительно друг друга и диаметра CB углы C 2 AC 1 =B 1 AB 2 =B 2 AB 3 =B 3 AB 4 =B 4 AB 5 =B 5 AB 6 =β=35 0 .(см. Рис.6)

Делим угол C 2 AC равный половине угла C 2 AC 1 пополам в точке E. Соединяем точки

E,C 2 ,B 1 ,B 2 ,B 3 между собой как показано на рисунке 6. Далее, для деления угла, используем Вариант 2 из ранее приведённого примера, т. к. Вариант 1 для деления углов на нечётное количество >3-х равных углов очевидно не применим. От линий B 3 E и B 1 C 2 в точках B 3 и B 1 соответственно, отложим углы y 1 и y 2 в соотношении 1:4. Из точек B 3 и B 1 проведём прямые соответственно этим углам, до пересечения в точке N. Угол C 2 AK=α=7 0 будет искомым.

Способ №2.

Этот способ (см. Рис.7) аналогичен первому с той лишь разницей, что для построений используется ¼ угла C2AC1 – угол EAC прилегающий к средней линии окружности BC. Преимущество данного способа в том, что он облегчает деление угла на большое количество углов - 7, 9, 11 и т. д.

Построение правильного семиугольника.

Примем, что n – число разбиений (количество секторов на которое делится угол).

Тогда если n-1=2 k (1), где k – любое целое число, то угол делится в один этап, что было показано ранее. Если n-1≠2 k (2) – то угол делится в два этапа, вначале на n-1 , а затем уже на n . При этом во всех случаях соблюдается соотношение: y 1 /y 2 = 1/n-1 (3).

Поясним это на примере построения правильного семиугольника.

Для того чтобы построить семиугольник надо найти 1/7-ю часть угла 60 0 ,умножить её на шесть, и отложить полученный угол семь раз по окружности (это один из возможных вариантов). Так как 7-1=6 то в соответствии с формулой (2) угол 60 0 будем делить в два этапа. На первом этапе разделим на шесть, а затем, на втором этапе, на семь. С этой целью, разделим угол 30 0 на три равных сектора по 10 0 (см. Рис.8), используя, как самый простой, Вариант 1 описанный в начале статьи. Полученный угол ECL=10 0 отложим от средней линии окружности (см. Рис.9). Будем считать, что угол ECL принадлежит симметрично отложенному относительно средней линии углу 60 0 .

Далее чтобы найти 1/7-ю часть угла 60 0 используем Способ №2 описанный ранее. С этой целью отложим угол D 1 CD 2 =60 0 симметрично к средней линии и угол D 2 CD 3 =60 0 примыкающий к нему. В точках D 1 и D 3 построим углы y 1 и y 2 к линиям D 1 E и D 3 L соответственно, соблюдая пропорции в соответствии с формулой (3) – то есть 1 к 6.

Проведём прямые линии под углами y 1 и y 2 . Соединим точки пересечения G и F соответствующих линий. Угол LCH=60 0 /7. Отложим этот угол шесть раз от точки L до точки B. Отложим полученный угол BCL ещё шесть раз, и в результате получим семиугольник LBKFMNA.

Заключение.

Способ деления угла на равные части, предлагаемый в данной статье имеет ограничение – невозможность его применения непосредственно для углов > 60 0 , что впрочем, не столь существенно с точки зрения принципиальной решаемости задачи.

Библиографический список:


1. Метельский Н. В. Математика. Курс средней школы для поступающих в вузы и техникумы. Изд. 3-е, стереотип. Мн., «Вышэйш. Школа», 1975 г. 688 с. с илл.

Деление угла на три равные части при помощи циркуля и линейки (Трисекция угла).

Жарков Вячеслав Сергеевич

Отсутствует

Интернет

Аннотация:

Предлагается общий подход к решению задач о делении угла на равные части с помощью циркуля и линейки. В качестве примера показано деление угла на три равные части (Трисекция угла).

It is proposed that the general approach to problem-solving to divide an angle into equal parts by using a compass and ruler. As an example, angle shows the Division into three equal parts (Trisection of the angle).

Ключевые слова:

угол; деление угла; трисекция угла.

angle; divide angle; trisection of an angle.

УДК 51

Введение.

Трисекция угла — задача о делении заданного угла на три равные части построением циркулем и линейкой. Иначе говоря, необходимо построить трисектрисы угла — лучи, делящие угол на три равные части. Наряду с задачами о квадратуре круга и удвоении куба является одной из классических неразрешимых задач на построение, известных со времён Древней Греции.

Целью данной статьи является доказательство ошибочности выше приведённого утверждения о неразрешимости, во всяком случае, в отношении задачи о трисекции угла.

Предлагаемое решение не требует сложных построений, практически универсально и позволяет делить углы на любое количество равных частей , что в свою очередь позволяет строить любые правильные многоугольники.

Вступительная часть.

Проведём прямую линию a и построим на ней ∆CDE. Условно назовём его «базовым» (Рис.1).

Выберем на линии a произвольную точку F и проведём ещё одну прямую линию b через т.F и вершину D треугольника. На линии b возьмем две произвольные точки G и H и соединим их c точками C и E как показано на Рис.1. Анализ рисунка позволяет записать следующие очевидные соотношения между углами:

1. α 1 -α 3 =y 1 ; α 3 -α 5 =y 3 ; α 1 -α 5 =y 1 +y 3 ;

2. α 2 -α 4 =y 2 ; α 4 -α 6 =y 4 ; α 2 -α 6 =y 2 +y 4 ;

3. y 1 /y 2 =y 3 /y 4 ;

Пояснение1. к п.3: Пусть углы - ∟ C ,∟ D ,∟ E являются углами при соответствующих вершинах базового треугольника ∆ CDE . Тогда можно записать:

C +∟ D +∟ E =180 0 - сумма углов ∆ CDE ;

C + y 2 +∟ D -(y 2 + y 1 )+∟ E + y 1 =180 0 - сумма углов ∆ CGE ;

Пусть y 1 / y 2 = n или y 1 = n * y 2 , тогда,

C + y 2 +∟ D -(y 2 + y 1 )+∟ E + n * y 2 =180 0

Сумма углов ∆ CHE :

C +(y 2 + y 4 )+∟ D -(y 2 + y 4 + y 1 + y 3 )+∟ E + n *(y 2 + y 4 )=180 0 , откуда

y 1 + y 3 = n *(y 2 + y 4 ) или y 1 + y 3 = n * y 2 + n * y 4 , и так как y 1 = n * y 2 ,то

y 3 = n * y 4 и следовательно y 1 /y 2 =y 3 /y 4 =n.

Далее, возьмем две произвольные точки на линии a - N и M, и проведём через них две линии c и d как показано на Рис.2. Очевидно, в том числе из ранее сказанного, что отношение изменений соответствующих углов на линиях c и d величина постоянная, т. е.: (β 1 -β 3)/(β 3 -β 5)= (β 2 -β 4)/(β 4 -β 6)= y 1 / y 3 = y 2 / y 4 ;

Деление угла на три равные части.

На окружности с центром в точке A отложим угол E 1 AE 2 =β (см. Рис. 3.1). На противоположной стороне окружности отложим симметрично три угла - CAC 1 , C 1 AC 2 , C 2 AC 3 каждый равный β. Разделим угол E 1 AE 2 , в точках K 1 ,K 3 , на три равных угла - ∟E 1 AK 1 , ∟K 1 AK 3 , ∟K 3 AE 2 равных β/3. Проведём прямые линии через точки на окружности как это показано на Рис. 3.1. Соединим прямыми линиями точки C,E 1 и C 2 ,E. (см. Рис. 3.2)

Через точку K - пересечения линий, и точку K 1 проведём прямую линию. Выберем на этой линии произвольную точку K 2 и проведём через неё две прямые из точек C и C 2 .

Не трудно заметить что Рис. 3.2, если убрать линию окружности, практически идентичен Рис. 2. (Для наглядности добавлена штриховая линия CC 2). Значит и все соотношения, о которых говорилось выше, применимы и здесь, а именно для углов которые необходимо разделить на три равные части справедливо соотношение y 1 /y 2 =y 3 /y 4 =1/2 (см. Пояснение 1. в вступительной части). Из рисунка 3.2 становится ясно, как поделить угол на три равных части.

Рассмотрим, в качестве примера, деление на три равных части угла β=50 0 .

Вариант 1.

На окружности с центром A откладываем циркулем симметрично относительно друг друга и диаметра CB (см. Рис 4.1) дуги C 1 C 2 =B 1 B 2 =B 2 B 3 =B 1 B 4 равные β=50 0 - относительно центра окружности. Половину дуги C 1 C 2 - CC 1 делим пополам (точка D). Проводим прямые через точки B 1 и D, и точки B 3 и C. Соединяем между собой точки B 1 и C, B 3 и C 1 . Соединяем точки пересечения - F и E, ранее проведённых линий, между собой. Полученный угол α=C 1 AG, где G точка пересечения линии FE с окружностью, равен β/3.

Вариант 2.

На окружности с центром A откладываем циркулем симметрично относительно друг друга и диаметра CB (см. Рис 4.2) дуги C 1 C 2 =B 1 B 2 =B 2 B 3 =B 1 B 4 =β=50 0 - относительно центра окружности. Соединяем между собой точки B 1 и C, B 3 и C 1 . Отложим углы y 2 =2y 1 (см. Рис 4.2) от линий B 1 C и B 3 C 1 и проведём прямые линии соответственно этим углам. Соединяем точки пересечения - F и E, ранее проведённых линий, между собой. Полученный угол α=C 1 AG≈16.67 0 , где G точка пересечения линии FE с окружностью, равен β/3.

Полное построение деления угла на три равных части (на примере угла β=50 0) показано на Рис.5

Деление угла на нечётное количество (>3-х) равных углов.

В качестве примера рассмотрим деление угла β=35 0 на пять равных между собой углов.

Способ №1.

На окружности с центром A откладываем циркулем симметрично относительно друг друга и диаметра CB углы C 2 AC 1 =B 1 AB 2 =B 2 AB 3 =B 3 AB 4 =B 4 AB 5 =B 5 AB 6 =β=35 0 .(см. Рис.6)

Делим угол C 2 AC равный половине угла C 2 AC 1 пополам в точке E. Соединяем точки

E,C 2 ,B 1 ,B 2 ,B 3 между собой как показано на рисунке 6. Далее, для деления угла, используем Вариант 2 из ранее приведённого примера, т. к. Вариант 1 для деления углов на нечётное количество >3-х равных углов очевидно не применим. От линий B 3 E и B 1 C 2 в точках B 3 и B 1 соответственно, отложим углы y 1 и y 2 в соотношении 1:4. Из точек B 3 и B 1 проведём прямые соответственно этим углам, до пересечения в точке N. Угол C 2 AK=α=7 0 будет искомым.

Способ №2.

Этот способ (см. Рис.7) аналогичен первому с той лишь разницей, что для построений используется ¼ угла C2AC1 - угол EAC прилегающий к средней линии окружности BC. Преимущество данного способа в том, что он облегчает деление угла на большое количество углов - 7, 9, 11 и т. д.

Построение правильного семиугольника.

Примем, что n - число разбиений (количество секторов на которое делится угол).

Тогда если n -1=2 k (1), где k - любое целое число, то угол делится в один этап, что было показано ранее. Если n -1 2 k (2) - то угол делится в два этапа, вначале на n -1 , а затем уже на n . При этом во всех случаях соблюдается соотношение: y 1 / y 2 = 1/ n -1 (3).

Поясним это на примере построения правильного семиугольника.

Для того чтобы построить семиугольник надо найти 1/7-ю часть угла 60 0 ,умножить её на шесть, и отложить полученный угол семь раз по окружности (это один из возможных вариантов). Так как 7-1=6 то в соответствии с формулой (2) угол 60 0 будем делить в два этапа. На первом этапе разделим на шесть, а затем, на втором этапе, на семь. С этой целью, разделим угол 30 0 на три равных сектора по 10 0 (см. Рис.8), используя, как самый простой, Вариант 1 описанный в начале статьи. Полученный угол ECL=10 0 отложим от средней линии окружности (см. Рис.9). Будем считать, что угол ECL принадлежит симметрично отложенному относительно средней линии углу 60 0 .

Далее чтобы найти 1/7-ю часть угла 60 0 используем Способ №2 описанный ранее. С этой целью отложим угол D 1 CD 2 =60 0 симметрично к средней линии и угол D 2 CD 3 =60 0 примыкающий к нему. В точках D 1 и D 3 построим углы y 1 и y 2 к линиям D 1 E и D 3 L соответственно, соблюдая пропорции в соответствии с формулой (3) - то есть 1 к 6.

Проведём прямые линии под углами y 1 и y 2 . Соединим точки пересечения G и F соответствующих линий. Угол LCH=60 0 /7. Отложим этот угол шесть раз от точки L до точки B. Отложим полученный угол BCL ещё шесть раз, и в результате получим семиугольник LBKFMNA.

Заключение.

Способ деления угла на равные части, предлагаемый в данной статье имеет ограничение - невозможность его применения непосредственно для углов > 60 0 , что впрочем, не столь существенно с точки зрения принципиальной решаемости задачи.

Библиографический список:


1. Метельский Н. В. Математика. Курс средней школы для поступающих в вузы и техникумы. Изд. 3-е, стереотип. Мн., «Вышэйш. Школа», 1975 г. 688 с. с илл.

Рецензии:

20.03.2016, 14:39 Назарова Ольга Петровна
Рецензия : Интересные выкладки, рекомендуется к печати

22.03.2016, 11:09 Мирмович-Тихомиров Эдуард Григорьевич
Рецензия : Интересно, познавательно, лаконично. Виден инженерный подход. Но этот материал следует публиковать не здесь, а в любом образовательном журнале. Если он был уже опубликован автором в другом издании, то тем более. Кроме того, данная платформа очень дискомфортна к формулам. Рецензент не хотел бы, чтобы здесь публиковались любые учебно-дидактические и методические материалы. Но спорить с уважаемой Ольгой Петровной не стану. Может, редакция ещё сама что-то порешает!?. Чёткой рекомендации да-нет дать трудно.

22.03.2016 16:16 Ответ на рецензию автора Жарков Вячеслав Сергеевич :
Приведённое решение, что очевидно, не предполагает приблизительности решения задачи!!!. Оно неверно только в одном случае, что тоже достаточно очевидно, если сумма углов треугольника на плоскости ≠1800. Что - нонсенс. Некоторые основы, в том числе и в математике, иногда требуют корректировки. И дидактика тут ни причём.

Построение и деление углов производят при помощи транспортира, однако многие углы можно построить и даже поделить при помощи угольников и циркуля. При помощи линейки и угольников с углами 30°, 60°, 90° и 45°, 45°, 90° можно построить любой угол, кратный 15°.

В теме о рейсшине на одном из показаны какие комбинации угольников используются при построении различных углов. Внимательно рассмотрите положение угольников при построении различных углов и используйте эти знания при выполнении чертежей. В учебной практике при выполнении чертежей использование транспортира приведено к минимуму.

Деление острого угла на две равные части

Деление острого угла на равные части выполняют при помощи циркуля и линейки. Нахождение биссектрисы угла рассмотрим на примере деления угла ВАС с вершиной в точке А. Через точку А, с произвольным радиусом R строим дугу до пересечения сторон угла в точках 1 и 2. Через точку 1 с этим же радиусом строим еще одну дугу, то же самое выполняем через точку 2.

Две дуги, пересекаясь между собой дают точку К, которую соединяем с точкой А. Прямая АК делит угол ВАС на две равные части и является ее биссектрисой.

Деление угла с удаленной вершиной на две равные части


Допустим, нам известны части АВ и CD сторон такого угла. Строим две параллельные прямые удаленные от сторон угла на равное расстоянию L. Расстояние следует выбрать таким, что выбранные прямые пересекались на поле листа, например в точке М. Далее выполняются все построения, что выполняли при делении острого угла на две равные части.

Полученная прямая MN делит данный угол на две равные части и является его биссектрисой.

Деление прямого угла на три равные части


Чтобы разделить прямой угол (например, угол BCD) на три равные части, из вершины угла (точки C) проводим дугу произвольного радиуса R до пересечения со сторонами угла в точках 1 и 2. Из точек 1 и 2, как из центров, радиусом R, проводим дуги, пересекающие дугу 1-2 в точках M и N, получим углы 1CM = MCN = NC2 = 30°.

Академик Российской АН Н. ДОЛЛЕЖАЛЬ.

Давний автор журнала академик Николай Антонович Доллежаль - крупный специалист в области энергетики. В свободное время Николай Антонович занимается исследованием знаменитых задач древности, известных как трисекция угла, удвоение куба и квадратура круга (см. "Наука и жизнь" № 7, 1993 г.; №№ 3, 8, 1994 г.; № 9, 1995 г.). Сложность всех этих задач состоит в том, что решаться они должны без вычислений и расчетов, чисто геометрически, только с помощью циркуля и линейки без делений. Используя именно этот классический метод, Н. А. Доллежаль сумел найти очень изящное решение задачи о делении на три равные части произвольного угла.

Наука и жизнь // Иллюстрации

Суть этой геометрической задачи заключается в отыскании графического метода деления произвольного угла на три равные части с помощью циркуля и обыкновенной линейки. Ниже приводим описание метода, решающего эту задачу независимо от размера и типа (острый, тупой) угла, предлагаемого для разделения. Ограничений на формы геометрических фигур нет, численных измерений или вычислений не делается. Для примера взят случайный угол.

Геометрические элементы комбинируются геометрической фигурой, состоящей из равнобедренного треугольника АВС с нижним углом В, подлежащим разделению на три равных угла, и равносторонней трапеции АDFC, все четыре угла которой находятся на равном расстоянии от вершины угла В. Треугольник и трапеция сомкнуты своими основаниями АС. Предлагаемый метод решения задачи состоит в следующем:

1) Основанием для построения упомянутой геометрической фигуры служат уравнения, связывающие основные ее элементы:

где S - основание треугольника и трапеции; а - сторона трапеции; t - высота треугольника; h - высота трапеции.

Главные элементы фигуры находятся во взаимной зависимости: отношения основания к стороне трапеции и высот трапеции треугольника связаны уравнением (2).

У отношений S/а и h/t есть пределы применимости: отношение основания трапеции к ее стороне находится в пределах 2 ... 3, а отношения высот трапеции и треугольника изменяются при этом от бесконечности до 0. За пределами этих ограничений построение фигуры треугольник плюс трапеция невозможно.

В таблице для примера и выбора основных показателей для построения треугольника и трапеции приведены некоторые численные значения переменных, входящих в уравнения. С ее помощью можно задать отношение S/а и получить отношение h/t.

На рис. 1 представлено решение задачи предлагаемым методом. В качестве примера, не имеющего принципиального значения, взято равенство высот треугольника и трапеции. Для большей наглядности на рисунке приведены дополнительные геометрические построения: деление угла надвое, проведение параллельных линий и нанесение равномерных делений.

Решение задачи начинается с деления заданного угла АВС пополам линией ВЕ и проведения под прямым углом к ней через точку В горизонтальной линии XY. На линии ХY в обе стороны от точки В наносятся деления, отвечающие отношению основания трапеции к ее стороне, в данном случае 5 и 2. Это соотношение получено из уравнения (2) при условии равенства высот - см. таблицу.

Из точек, отвечающих делению 5, проводятся параллели биссектрисе ВЕ до пересечения со сторонами угла в точках А и С. Линия АС служит общим основанием треугольника и трапеции, отрезки АВ и ВС равны. Из точек, отвечающих отметке 2 на отрезке XY, проводятся линии, также параллельные биссектрисе угла АВС, и на них отрезками BD и BF, равными сторонам треугольника ВА = ВС, отмечаются точки D и F - вершины углов трапеции АDFC. Точки D и F определяют высоту ВЕ, равную сумме высот треугольника и трапеции.

Для проверки и доказательства проводятся диагонали AF и DC трапеции АDFC, пересекающиеся в точке Z на средней линии треугольника АВС. Образовавшиеся два треугольника АDF и DFC равнобедренные, поскольку их основания, т. е. диагонали трапеции, разделены в точках Т надвое, пересекаясь в них с радиусами ВD и ВF и средней линией РР трапеции. Сторона DF принадлежит обоим треугольникам, поэтому треугольники АВD, DВF и FВС равны. Все три их угла с вершинами в точке В равны между собой и в сумме составляют заданный угол АВС.

Отрезки прямых DM и FN образуют стороны ромбов ADFN и DFCM, своими геометрическими свойствами подтверждающих правильность построения.

На рис. 2 показано соотношение образовавшихся углов. Характерно, что нижние углы трапеции DАС = FСА равны одной трети разделяемого угла АВС.

При построении геометрической фигуры на рис. 1 было принято отношение величины основания трапеции к ее стороне 5:2 для простоты построений: этому соотношению отвечает равенство высот трапеции и треугольника.

На рис. 3 построена фигура "треугольник - трапеция" для сравнительно острого угла АВС. Исходным принимается отношение высоты треугольника к сумме высот треугольника и трапеции, равное 5:6, которому, согласно уравнению (1), отвечает значение S/а = 17/6. Как и в первом случае, это значение поровну, т. е. 8 1/2 к 3, откладывается на линии XY в обе стороны от точки В, и производятся аналогичные построения.

Вообще, нет необходимости предварительно принимать численные значения S/а. Достаточно на линиях ВХ и ВY из точки В отложить по три равных отрезка, отметив их концы, и из любой точки между второй и третьей отметками построить перпендикуляры до пересечения со сторонами угла В в точках А и С. Затем из первой отметки также восстановить перпендикуляры и на них отложить точки D и F на расстоянии от точки В, равном стороне треугольника АВС.

Если из точек А и С на линиях ВD и ВF отложить по две равноотстоящие точки N и М, получим отрезок NM, равный S-2а. Отношение этой длины к а определяет отношение высот трапеции и треугольника согласно формуле (2).

В остальном поступают, как и в первом случае. Правильность построения можно проверить по формуле

следующей из (2). Сумма t+h никогда не превышает сторону ВА(ВD) треугольника.

Графически равенство (4) проверяется так (рис. 4). Берется произвольный угол PQN, разделенный биссектрисой QQ?. На левой стороне угла от точки Q циркулем откладываются отрезки S-а и а, образующие точки Р и L. Далее точка Р соединяется с точкой Q? и из точки L проводится параллельная РQ? линия LQ???. Это означает, что на биссектрисе угла возникла отметка Q, причем а/(S-а)= = QQ??/QQ?. На правой стороне угла откладываем циркулем отрезки 2t+h и t+h из построенного чертежа. Конец отрезка 2t+h - точку N - также соединяем с точкой Q?, а из точки М - конца отрезка t+h - проводим линию, параллельную NQ?. На средней линии угла отмечается отношение (t+h)/(2t+h)=QQ??? /QQ?. Если линии LQ?? и МQ??? пересекаются на средней линии угла, это означает, что левая и правая части в формуле равны. Что и требуется.

Можно ли путем измерения соответствующих отрезков, в частности оснований треугольников, определить их длину? Нельзя, так как каждый служит хордой соответствующей воображаемой дуги окружности, содержащей долю, не поддающуюся измерению. Для определения точности решения задачи может быть использован только графический метод.

Таким образом, нами предложено доказательство возможности графического деления угла на три с помощью циркуля и линейки. Остается графически не выясненной связь элементов трапеции и треугольников, иными словами, зависимость между стороной трапеции а и высотой треугольника t. Эта задача может иметь самостоятельный характер для принципа построения трапеции.

Приношу благодарность профессору МГТУ В. И. Солонину за благожелательную критику.