ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Даны вершины треугольника найти уравнение стороны. Уравнение высоты треугольника и ее длина

Инструкция

Вам заданы трех точек. Обозначим их как (x1, y1), (x2, y2), (x3, y3). Предполагается, что эти точки являются вершинами некоторого треугольника . Задача в том, чтобы составить уравнения его сторон - точнее уравнения тех прямых, на которых лежат эти стороны. Эти уравнения должны иметь вид:
y = k1*x + b1;
y = k2*x + b2;
y = k3*x + b3.Таким образом, вам предстоит найти угловые k1, k2, k3 и смещения b1, b2, b3.

Найдите прямой, проходящей через точки (x1, y1), (x2, y2). Если x1 = x2, то искомая прямая вертикальна и ее уравнение x = x1. Если y1 = y2, то прямая горизонтальна и ее уравнение y = y1. В общем случае эти координаты не будут друг другу.

Подставляя координаты (x1, y1), (x2, y2) в общее уравнение прямой, вы получите систему из двух линейных уравнений:k1*x1 + b1 = y1;
k1*x2 + b1 = y2.Вычтите одно уравнение из другого и решите полученное уравнение относительно k1:k1*(x2 - x1) = y2 - y1, следовательно, k1 = (y2 - y1)/(x2 - x1).

Подставляя найденное в любое из исходных уравнений, найдите выражение для b1:((y2 - y1)/(x2 - x1))*x1 + b1 = y1;
b1 = y1 - ((y2 - y1)/(x2 - x1))*x1.Поскольку уже известно, что x2 ≠ x1, можно упростить выражение, умножив y1 на (x2 - x1)/(x2 - x1). Тогда для b1 вы получите следующее выражение:b1 = (x1*y2 - x2*y1)/(x2 - x1).

Проверьте, не ли третья из заданных точек на найденной прямой. Для этого подставьте (x3, y3) в выведенное уравнение и посмотрите, соблюдается ли равенство. Если оно соблюдается, следовательно, все три точки лежат на одной прямой, и треугольник вырождается в отрезок.

Тем же способом, что описан выше, выведите уравнения для прямых, проходящих через точки (x2, y2), (x3, y3) и (x1, y1), (x3, y3).

Окончательный вид уравнений для сторон треугольника, заданного координатами вершин, так:(1) y = ((y2 - y1)*x + (x1*y2 - x2*y1))/(x2 - x1);
(2) y = ((y3 - y2)*x + (x2*y3 - x3*y2))/(x3 - x2);
(3) y = ((y3 - y1)*x + (x1*y3 - x3*y1))/(x3 - x1).

Чтобы найти уравнения сторон треугольника , прежде всего надо постараться решить вопрос о том, как найти уравнение прямой на плоскости, если известен ее направляющий вектор s(m, n) и некоторая точка М0(x0, y0), принадлежащая прямой.

Инструкция

Возьмите произвольную (переменную, плавающую) точку М(x, y) и постройте вектор М0M ={x-x0, y-y0} ( записать и М0M(x-x0, y-y0)), который, очевидно будет коллинеарен (параллелен) по к s. Тогда, можно заключить, что координаты этих векторов пропорциональны, поэтому можно составить каноническое прямой: (x-x0)/m = (y-y0)/n. Именно это соотношение будет использоваться в при решении поставленной задачи.

Все дальнейшие действия определяются исходя из способа .1-й способ. Треугольник задан координатами трех его вершин, что в школьной геометрии заданию длин трех его сторон (см. рис. 1). То есть в условии даны точки M1(x1, y1), M2(x2, y2), M3(x3, y3). Им соответствуют их радиус-векторы) OM1, 0M2 и ОМ3 с такими же, как и у точек, координатами. Для получения уравнения сторон ы М1М2 требуется ее направляющий вектор М1М2=ОМ2 – ОМ1=М1М2(x2-x1, y2-y1) и любая из точек М1 или М2 (здесь взята точка с меньшим индексом).

Итак, для сторон ы М1М2 каноническое уравнение прямой (x-x1)/(x2-x1)=(y-y1)/(y2-y1). Действуя чисто индуктивно можно записать уравнения остальных сторон .Для сторон ы М2М3: (x-x2)/(x3-x2)=(y-y2)/(y3-y2). Для сторон ы М1М3: (x-x1)/(x3-x1)=(y-y1)/(y3-y1).

2-й способ. Треугольник задан двумя точками (теми же, что и ранее М1(x1, y1) и M2(x2, y2)), а также ортами направлений двух других сторон . Для сторон ы М2М3: p^0(m1, n1). Для М1М3: q^0(m2, n2). Поэтому для сторон ы М1М2 будет тем же, что и в первом способе:(x-x1)/(x2-x1)=(y-y1)/(y2-y1).

Для сторон ы М2М3 в качестве точки (x0, y0) канонического уравнения (x1, y1), а направ-ляющий вектор – это p^0(m1, n1). Для сторон ы М1М3 в качестве точки (x0, y0) берется (x2, y2), направляющий вектор – q^0(m2, n2). Таким образом, для М2М3: уравнение (x-x1)/m1=(y-y1)/n1.Для М1М3: (x-x2)/m2=(y-y2)/n2.

Видео по теме

Совет 3: Как найти высоту треугольника, если даны координаты точек

Высотой называют отрезок прямой линии, соединяющий вершину фигуры с противолежащей стороной. Этот отрезок обязательно должен быть перпендикулярен стороне, поэтому из каждой вершины можно провести лишь одну высоту . Поскольку вершин в этой фигуре три, высот в нем столько же. Если треугольник задан координатами своих вершин, вычисление длины каждой из высот можно произвести, например, воспользовавшись формулой нахождения площади и рассчитав длины сторон.

Инструкция

Начните с вычисления длин сторон треугольника . Обозначьте координаты фигуры так: A(X₁,Y₁,Z₁), B(X₂,Y₂,Z₂) и C(X₃,Y₃,Z₃). Тогда длину стороны AB вы сможете рассчитать по формуле AB = √((X₁-X₂)² + (Y₁-Y₂)² + (Z₁-Z₂)²). Для двух других сторон эти будут выглядеть так: BC = √((X₂-X₃)² + (Y₂-Y₃)² + (Z₂-Z₃)²) и AC = √((X₁-X₃)² + (Y₁-Y₃)² + (Z₁-Z₃)²). Например, для треугольника с координатами A(3,5,7), B(16,14,19) и C(1,2,13) длина стороны AB составит √((3-16)² + (5-14)² + (7-19)²) = √(-13² + (-9²) + (-12²)) = √(169 + 81 + 144) = √394 ≈ 19,85. Длины сторон BC и AC, рассчитанные таким же способом, будут равны √(15² + 12² + 6²) = √405 ≈ 20,12 и √(2² + 3² + (-6²)) = √49 = 7.

Знания длин трех сторон, полученных на предыдущем шагу, достаточно для вычисления площади треугольника (S) по формуле Герона: S = ¼ * √((AB+BC+CA) * (BC+CA-AB) * (AB+CA-BC) * (AB+BC-CA)). Например, подстановки в эту формулу значений, полученных из координат треугольника -образца из предыдущего шага, эта даст значение: S = ¼*√((19,85+20,12+7) * (20,12+7-19,85) * (19,85+7-20,12) * (19,85+20,12-7)) = ¼*√(46,97 * 7,27 * 6,73 * 32,97) ≈ ¼*√75768,55 ≈ ¼*275,26 = 68,815.

Исходя из площади треугольника , рассчитанной на предыдущем шаге, и длин сторон, полученных на втором шаге, вычислите высоты для каждой из сторон. Так как площадь равна половине произведения высоты на длину стороны, к которой она проведена, для нахождения высоты делите удвоенную площадь на длину нужной стороны: H = 2*S/a. Для использованного выше примера высота, опущенная на сторону AB составит 2*68,815/16,09 ≈ 8,55, высота к стороне ВС иметь длину 2*68,815/20,12 ≈ 6,84, а для стороны АС эта величина будет равна 2*68,815/7 ≈ 19,66.

Источники:

  • даны точки найти площадь треугольника

Совет 4: Как по координатам вершин треугольника найти уравнения его сторон

В аналитической геометрии треугольник на плоскости можно задать в декартовой системе координат. Зная координаты вершин, вы можете составить уравнения сторон треугольника. Это будут уравнения трех прямых, которые, пересекаясь, образуют фигуру.

В задачах 1 - 20 даны вершины треугольника АВС.
Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) Внутренний угол А в радианах с точностью до 0,01; 4) уравнение высоты CD и ее длину; 5) уравнение окружности, для которой высота CD есть диаметр; 6) систему линейных неравенств, определяющих треугольник АВС.

Длина сторон треугольника:
|AB| = 15
|AC| = 11.18
|BC| = 14.14
Расстояние d от точки M: d = 10
Даны координаты вершин треугольника: A(-5,2), B(7,-7), C(5,7).
2) Длина сторон треугольника
Расстояние d между точками M 1 (x 1 ; y 1) и M 2 (x 2 ; y 2) определяется по формуле:



8) Уравнение прямой
Прямая, проходящая через точки A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2), представляется уравнениями:

Уравнение прямой AB


или

или
y = -3 / 4 x -7 / 4 или 4y + 3x +7 = 0
Уравнение прямой AC
Каноническое уравнение прямой:

или

или
y = 1 / 2 x + 9 / 2 или 2y -x - 9 = 0
Уравнение прямой BC
Каноническое уравнение прямой:

или

или
y = -7x + 42 или y + 7x - 42 = 0
3) Угол между прямыми
Уравнение прямой AB:y = -3 / 4 x -7 / 4
Уравнение прямой AC:y = 1 / 2 x + 9 / 2
Угол φ между двумя прямыми, заданными уравнениями с угловыми коэффициентами y = k 1 x + b 1 и y 2 = k 2 x + b 2 , вычисляется по формуле:

Угловые коэффициенты данных прямых равны -3 / 4 и 1 / 2 . Воспользуемся формулой, причем ее правую часть берем по модулю:

tg φ = 2
φ = arctg(2) = 63.44 0 или 1.107 рад.
9) Уравнение высоты через вершину C
Прямая, проходящая через точку N 0 (x 0 ;y 0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:



Данное уравнение можно найти и другим способом. Для этого найдем угловой коэффициент k 1 прямой AB.
Уравнение AB: y = -3 / 4 x -7 / 4 , т.е. k 1 = -3 / 4
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k 1 *k = -1.
Подставляя вместо k 1 угловой коэффициент данной прямой, получим:
-3 / 4 k = -1, откуда k = 4 / 3
Так как перпендикуляр проходит через точку C(5,7) и имеет k = 4 / 3 ,то будем искать его уравнение в виде: y-y 0 = k(x-x 0).
Подставляя x 0 = 5, k = 4 / 3 , y 0 = 7 получим:
y-7 = 4 / 3 (x-5)
или
y = 4 / 3 x + 1 / 3 или 3y -4x - 1 = 0
Найдем точку пересечения с прямой AB:
Имеем систему из двух уравнений:
4y + 3x +7 = 0
3y -4x - 1 = 0
Из первого уравнения выражаем y и подставим во второе уравнение.
Получаем:
x = -1
y = -1
D(-1;-1)
9) Длина высоты треугольника, проведенной из вершины C
Расстояние d от точки M 1 (x 1 ;y 1) до прямой Ax + By + С = 0 равно абсолютному значению величины:

Найдем расстояние между точкой C(5;7) и прямой AB (4y + 3x +7 = 0)


Длину высоты можно вычислить и по другой формуле, как расстояние между точкой C(5;7) и точкой D(-1;-1).
Расстояние между двумя точками выражается через координаты формулой:

5) уравнение окружности, для которой высота CD есть диаметр;
Уравнение окружности радиуса R с центром в точке E(a;b) имеет вид:
(x-a) 2 + (y-b) 2 = R 2
Так как CD является диаметром искомой окружности, то ее центр Е есть середина отрезка CD. Воспользовавшись формулами деления отрезка пополам, получим:


Следовательно, Е(2;3) и R = CD / 2 = 5. Использую формулу, получаем уравнение искомой окружности: (x-2) 2 + (y-3) 2 = 25

6) система линейных неравенств, определяющих треугольник АВС.
Уравнение прямой AB: y = -3 / 4 x -7 / 4
Уравнение прямой AC: y = 1 / 2 x + 9 / 2
Уравнение прямой BC: y = -7x + 42

Как научиться решать задачи по аналитической геометрии?
Типовая задача с треугольником на плоскости

Этот урок создан на подходе к экватору между геометрией плоскости и геометрией пространства. В данный момент назрела необходимость систематизировать наработанную информацию и ответить на очень важный вопрос: как научиться решать задачи по аналитической геометрии? Трудность состоит в том, что задач по геометрии можно придумать бесконечно много, и никакой учебник не вместит в себя всё множество и разнообразие примеров. Это не производная функции с пятью правилами дифференцирования, таблицей и несколькими техническими приёмами….

Решение есть! Не буду говорить громких слов о том, что я разработал какую-то грандиозную методику, однако, по моему мнению, существует эффективный подход к рассматриваемой проблеме, позволяющий достигнуть хорошей и отличной результативности даже полному чайнику. По крайне мере, общий алгоритм решения геометрических задач очень чётко оформился в моей голове.

ЧТО НЕОБХОДИМО знать и уметь
для успешного решения задач по геометрии?

От этого никуда не деться – чтобы наугад не тыкать носом кнопки, требуется освоить азы аналитической геометрии. Поэтому если вы только-только приступили к изучению геометрии или капитально позабыли её, пожалуйста, начните с урока Векторы для чайников . Кроме векторов и действий с ними, нужно знать базовые понятия геометрии плоскости, в частности, уравнение прямой на плоскости и . Геометрия пространства представлена статьями Уравнение плоскости , Уравнения прямой в пространстве , Основные задачи на прямую и плоскость и некоторыми другими уроками. Кривые линии и пространственные поверхности второго порядка стоЯт некоторым особняком, и специфических задач с ними не так уж много.

Предположим, студент уже обладает элементарными знаниями и навыками решения простейших задач аналитической геометрии. Но вот бывает же так: читаешь условие задачи, и… хочется вообще закрыть всё это дело, закинуть в дальний угол и забыть, как о страшном сне. Причём это принципиально не зависит от уровня вашей квалификации, сам время от времени сталкиваюсь с заданиями, у которых решение не очевидно. Как поступать в таких случаях? Не нужно бояться задачи, которая вам не понятна!

Во-первых , следует установить – это «плоская» или пространственная задача? Например, если в условии фигурируют векторы с двумя координатами, то, понятно, тут геометрия плоскости. А если преподаватель загрузил благодарного слушателя пирамидой, то здесь явно геометрия пространства. Результаты первого шага уже неплохи, ведь удалось отсечь громадное количество ненужной для данной задачи информации!

Второе . Условие, как правило, озаботит вас некоторой геометрической фигурой. Действительно, пройдитесь по коридорам родного ВУЗа, и вы увидите очень много озабоченных лиц.

В «плоских» задачах, не говоря о разумеющихся точках и прямых, наиболее популярная фигура – треугольник. Его мы разберём очень подробно. Далее идёт параллелограмм, и значительно реже встречаются прямоугольник, квадрат, ромб, окружность, др. фигуры.

В пространственных задачах могут летать те же плоские фигуры + сами плоскости и распространённые треугольные пирамиды с параллелепипедами.

Вопрос второй – всё ли вы знаете о данной фигуре? Предположим, в условии идёт речь о равнобедренном треугольнике, а вы весьма смутно помните, что это такой за треугольник. Открываем школьный учебник и читаем про равнобедренный треугольник. Что делать… врач сказал ромб, значит, ромб. Аналитическая геометрия аналитической геометрией, но задачу помогут решить геометрические свойства самих фигур , известные нам из школьной программы. Если не знать, чему равна сумма углов треугольника, то мучиться можно долго.

Третье . ВСЕГДА старайтесь выполнять чертёж (на черновике/чистовике/мысленно), даже если этого не требуется по условию. В «плоских» задачах сам Евклид велел взять в руки линейку с карандашом – и не только для того, чтобы понять условие, но и в целях самопроверки. При этом наиболее удобный масштаб 1 единица = 1 см (2 тетрадные клетки). Уж не будем рассуждать о нерадивых студентах и вращающихся в гробах математиках – в таких задачах совершить ошибку практически невозможно. Для пространственных заданий выполняем схематический рисунок, который тоже поможет проанализировать условие.

Чертёж или схематический чертёж зачастую сразу позволяет увидеть путь решения задачи. Конечно, для этого нужно знать фундамент геометрии и рубить в свойствах геометрических фигур (см. предыдущий пункт).

Четвёртое . Разработка алгоритма решения . Многие задачи геометрии являются многоходовыми, поэтому решение и его оформление очень удобно разбивать на пункты. Нередко алгоритм сразу же приходит в голову, после того как вы прочитали условие или выполнили чертёж. В случае возникновения трудностей начинаем с ВОПРОСА задачи . Например, по условию «требуется построить прямую…». Здесь самый логичный вопрос такой: «А что достаточно знать, чтобы построить данную прямую?». Предположим, «точка нам известна, нужно знать направляющий вектор». Задаём следующий вопрос: «Как найти этот направляющий вектор? Откуда?» и т.д.

Иногда случается «затык» – не решается задача и всё тут. Причины стопора могут быть следующими:

– Серьёзный пробел в элементарных знаниях. Иными словами, вы не знаете или (и) не видите какой-то очень простой вещи.

– Незнание свойств геометрических фигур.

– Задача попалась трудная. Да, так бывает. Нет смысла часами париться и собирать слёзки в платочек. Обратитесь за консультацией к преподавателю, сокурсникам или задайте вопрос на форуме. Причём, его постановку лучше сделать конкретной – о том участке решения, который вам не понятен. Клич в виде «Как решить задачу?» выглядит не очень-то… и, прежде всего, для вашей собственной репутации.

Этап пятый . Решаем-проверяем, решаем-проверяем, решаем-проверяем-даём ответ. Каждый пункт задачи выгодно проверять сразу после его выполнения . Это поможет немедленно обнаружить ошибку. Естественно, никто не запрещает быстренько прорешать задачу целиком, но возникает риск переписывать всё заново (часто несколько страниц).

Вот, пожалуй, все основные соображения, которыми целесообразно руководствоваться при решении задач.

Практическая часть урока представлена геометрией на плоскости. Примеров будет всего два, но мало не покажется =)

Пройдёмся по нити алгоритма, который я только что рассмотрел в своём маленьком научном труде:

Пример 1

Даны три вершины параллелограмма . Найти вершину .

Начинаем разбираться:

Шаг первый : очевидно, что речь идёт о «плоской» задаче.

Шаг второй : в задаче речь идёт о параллелограмме. Все помнят такую фигуру параллелограмм? Не нужно улыбаться, немало людей получает образование в 30-40-50 и более лет, поэтому даже простые факты могут стереться из памяти. Определение параллелограмма встречается в Примере № 3 урока Линейная (не) зависимость векторов. Базис векторов .

Шаг третий : Выполним чертёж, на котором отметим три известные вершины. Забавно, что несложно сразу построить искомую точку :

Построить, это, конечно, хорошо, но решение необходимо оформить аналитически.

Шаг четвёртый : Разработка алгоритма решения. Первое, что приходит в голову – точку можно найти как пересечение прямых . Их уравнения нам неизвестны, поэтому придётся заняться этим вопросом:

1) Противоположные стороны параллельны. По точкам найдём направляющий вектор данных сторон . Это простейшая задача, которая рассматривалась на уроке Векторы для чайников .

Примечание: корректнее говорить «уравнение прямой, содержащей сторону», но здесь и далее для краткости я буду использовать словосочетания «уравнение стороны», «направляющий вектор стороны» и т.д.

3) Противоположные стороны параллельны. По точкам найдём направляющий вектор этих сторон .

4) Составим уравнение прямой по точке и направляющему вектору

В пунктах 1-2 и 3-4 мы фактически дважды решили одну и ту же задачу, она, кстати, разобрана в примере № 3 урока Простейшие задачи с прямой на плоскости . Можно было пойти более длинным путём – сначала найти уравнения прямых и только потом «вытащить» из них направляющие векторы .

5) Теперь уравнения прямых известны. Осталось составить и решить соответствующую систему линейных уравнений (см. примеры № 4, 5 того же урока Простейшие задачи с прямой на плоскости ).

Точка найдена.

Задача довольно таки простая и её решение очевидно, но существует более короткий путь!

Второй способ решения :

Диагонали параллелограмма своей точкой пересечения делятся пополам. Точку я отметил, но чтобы не загромождать чертёж сами диагонали не провёл.

Составим уравнение стороны по точкам :

Для проверки следует мысленно либо на черновике подставить координаты каждой точки в полученное уравнение. Теперь найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:

Таким образом, угловой коэффициент:

Аналогично находим уравнения сторон . Не вижу особого смысла расписывать то же самое, поэтому сразу приведу готовый результат:

2) Найдём длину стороны . Это простейшая задача, рассмотренная на уроке Векторы для чайников . Для точек используем формулу:

По этой же формуле легко найти и длины других сторон. Проверка очень быстро выполнятся обычной линейкой.

Используем формулу .

Найдём векторы:

Таким образом:

Кстати, попутно мы нашли длины сторон .

В результате:

Ну что же, похоже на правду, для убедительности к углу можно приложить транспортир.

Внимание! Не путайте угол треугольника с углом между прямыми. Угол треугольника может быть тупым, а угол между прямыми – нет (см. последний параграф статьи Простейшие задачи с прямой на плоскости ). Однако для нахождения угла треугольника можно использовать и формулы вышеуказанного урока, но шероховатость состоит в том, что те формулы всегда дают острый угол. С их помощью я прорешал на черновике данную задачу и получил результат . А на чистовике пришлось бы записывать дополнительные оправдания, что .

4) Составить уравнение прямой , проходящей через точку параллельно прямой .

Стандартная задача, подробно рассмотренная в примере № 2 урока Простейшие задачи с прямой на плоскости . Из общего уравнения прямой вытащим направляющий вектор . Составим уравнение прямой по точке и направляющему вектору :

Как найти высоту треугольника?

5) Составим уравнение высоты и найдём её длину.

От строгих определений никуда не деться, поэтому придётся приворовывать из школьного учебника:

Высотой треугольника называется перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

То есть, необходимо составить уравнение перпендикуляра, проведённого из вершины к стороне . Данная задача рассмотрена в примерах № 6, 7 урока Простейшие задачи с прямой на плоскости . Из уравнения снимаем вектор нормали . Уравнение высоты составим по точке и направляющему вектору :

Обратите внимание, что координаты точки нам не известны.

Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты составим по точке и угловому коэффициенту (см. начало урока Уравнение прямой на плоскости ):

Длину высоты можно найти двумя способами.

Существует окольный путь:

а) находим – точку пересечения высоты и стороны ;
б) находим длину отрезка по двум известным точкам.

Но на уроке Простейшие задачи с прямой на плоскости рассматривалась удобная формула расстояния от точки до прямой. Точка известна: , уравнение прямой тоже известно: , Таким образом:

6) Вычислим площадь треугольника. В пространстве площадь треугольника традиционно рассчитывается с помощью векторного произведения векторов , но здесь дан треугольник на плоскости. Используем школьную формулу:
– площадь треугольника равна половине произведения его основания на высоту.

В данном случае:

Как найти медиану треугольника?

7) Составим уравнение медианы .

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

а) Найдём точку – середину стороны . Используем формулы координат середины отрезка . Известны координаты концов отрезка: , тогда координаты середины:

Таким образом:

Уравнение медианы составим по точкам :

Чтобы проверить уравнение, в него нужно подставить координаты точек .

8) Найдём точку пересечения высоты и медианы. Думаю, этот элемент фигурного катания все уже научились выполнять без падений:

Задание 1

57. даны вершины треугольника АВС. Найти

) длину стороны АВ;

) уравнения сторон АВ и АС и их угловые коэффициенты;

) внутренний угол А;

) уравнение медианы проведенной ихз вершины В;

) уравнение высоты СD и ее длину;

)уравнение окружности для которой высота СD есть диаметр и точки пересечения этой окружности со стороной АС;

) уравнение биссектрисы внутреннего угла А;

) площадь треугольника АВС;

) систему линейных неравенств, определяющих треугольник АВС.

Сделать чертеж.

А(7, 9); В(-2, -3); С(-7, 7)

Решение:

1) Найдем длину вектора

= (хb - xa)2 + (yb - ya)2 = ((-2)-7)2 + (-3 - 9)2 = 92 + 122 = 225

= = 15 - длина стороны АВ

2) Найдем уравнение стороны АВ

Уравнение прямой, проходящей через точки

А(ха; ув) и В(ха; ув) в общем виде

Подставим координаты точек А и В в это уравнение прямой

=

=

=

SAB = (- 3, - 4) называется направляющим вектором прямой АВ. Этот вектор параллелен прямой АВ.

4(х - 7) = - 3(у - 9)

4х + 28 = - 3у + 27

4х + 3у + 1 = 0 - уравнение прямой АВ

Если уравнение записать в виде: у = х - то можно выделить его угловой коэффициент: k1 =4/3

Вектор NAB = (-4, 3) называется нормальным вектором прямой AB.

Вектор N AB = (-4, 3) перпендикулярен прямой AB.

Аналогично найдем уравнение стороны АС

=

=

=

S = (- 7, - 1) - направляющий вектор стороны АС

(х - 7) = - 7(у - 9)

х + 7 = - 7у + 63

х + 7у - 56 = 0 - уравнение стороны АС

у = = х + 8 откуда угловой коэффициент k2 = 1/7

Вектор N AC = (- 1, 7) - нормальный вектор прямой AC.

Вектор N AC = (- 1, 7) перпендикулярен прямой AC.

3) Найдем угол А

Запишем формулу скалярного произведения векторов и

* = * cos ∟A

Для нахождения угла А достаточно найти косинус данного угла. Из предыдущей формулы запишем выражение для косинуса угла А

cos ∟A =

Находим скалярное произведение векторов и

= (хв - ха; ув - уа) = (- 2 - 7; - 3 - 9) = (-9, -12)

= (хс - ха; ус - уа) = (- 7 - 7; 7 - 9) = (-14; -2)

9*(-14) + (-12)*(-2) = 150

Длина вектора = 15 (нашли ранее)

Найдем длину вектора

= (хС - xа)2 + (yс - ya)2 = (-14)2 + (-2)2 = 200

= = 14,14 - длина стороны АС

Тогда cos ∟A = = 0,7072

∟A = 450

4) Найдем уравнение медианы ВЕ, проведенной из точки В на сторону АС

Уравнение медианы в общем виде

Теперь необходимо найти направляющий вектор прямой ВЕ.

Достроим треугольник АВС до параллелограмма АВСD, таким образом, чтобы сторона АС являлась его диагональю. Диагонали в параллелограмме делятся пополам, т. е. АЕ = ЕС. Следовательно, точка E лежит на прямой BF.

В качестве направляющего вектора прямой BE можно принять вектор , который и найдем.

= +

= (хc - хb; уc - уb) = (- 7- (-2); 7 - (-3)) = (-5. 10)

= + = (-5 + 9; 10 + 12) = (4; 22)

Подставим в уравнение

Подставим координаты точки С (-7; 7)

(х + 7) = 2(у - 7)

х + 77 = 2у - 14

х - 2у + 91 = 0 - уравнение медианы ВЕ

Так как точка Е - середина стороны АС, то ее координаты

хе = (ха + хс)/2 = (7 - 7)/2 = 0

уе = (уа + ус)/2 = (9 + 7)/2 = 8

Координаты точки Е (0; 8)

5) Найдем уравнение высоты CD и ее длину

Уравнение в общем виде

Необходимо найти направляющий вектор прямой СD

Прямая СD перпендикулярна прямой АВ, следовательно, направляющий вектор прямой СD параллелен нормальному вектору прямой АВ

CDAB

То есть в качестве направляющего вектора прямой CD можно принять нормальный вектор прямой АВ

Вектор AB найден ранее: AB (-4, 3)

Подставим координаты точки С, (- 7; 7)

(х + 7) = - 4(у - 7)

х + 21 = - 4у + 28

х + 4у - 7 = 0 - уравнение высоты С D

Координаты точки D:

Точка D принадлежит прямой АВ, следовательно, координаты точки D(xd. yd) должны удовлетворять уравнению прямой АВ, найденному ранее

Точка D принадлежит прямой CD, следовательно, координаты точки D(xd. yd) должны удовлетворять уравнению прямой CD,

Составим систему уравнений на основе этого

Координаты D(1; 1)

Найдем длину прямой CD

= (хd - xc)2 + (yd - yc)2 = (1 + 7)2 + (1 - 7)2 = 64 +36 = 100

= = 10 - длина прямой СD

6) Найдем уравнение окружности диаметром СD

Очевидно, что прямая СD проходит через начало координат так как ее уравнение -3х - 4у = 0, следовательно, уравнение окружности можно записать в виде

(х - а)2 + (у - b)2 = R2 - уравнение окружности с центром в точке (а; b)

Здесь R = СD/2 = 10 /2 = 5

(х - а)2 + (у - b)2 = 25

Центр окружности О (а; b) лежит на середине отрезка СD. Найдем его координаты:

х0 = a = = = - 3;

y0 = b = = = 4

Уравнение окружности:

(х + 3)2 + (у - 4)2 = 25

Найдем пересечение этой окружности со стороной АС:

точка К принадлежит одновременно окружности и прямой АС

х + 7у - 56 = 0 - уравнение прямой АС, найденной ранее.

Составим систему

Таким образом, получили квадратное уравнение

у2 - 750у +2800 = 0

у2 - 15у + 56 = 0

=

у1 = 8

у2 = 7 - точка, соответствующая точке С

следовательно координаты точки Н:

х = 7*8 - 56 = 0