ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Работа внешних сил. Основные формулы термодинамики и молекулярной физики, которые вам пригодятся От чего зависит работа газа

Историческая справка.

1) М.В. Ломоносов, проведя стройные рассуждения и простые опыты, пришел к выводу, что «причина теплоты состоит во внутреннем движении частиц связанной материи… Весьма известно, что тепло возбуждается движением: руки от взаимного трения согреваются, дерево загорается, искры вылетают при ударе кремнием о сталь, железо накаливается при ковании его частиц сильными ударами»

2) Б. Румфорд, работая на заводе по изготовлению пушек, заметил, что при сверлении пушечного ствола он сильно нагревается. Например, он помещал металлический цилиндр массой около 50 кг в ящик с водой и, сверля цилиндр сверлом, доводил воду в ящике до кипения за 2.5часа.

3) Дэви в 1799 году осуществил интересный опыт. Два куска льда при трении одного о другой начали таять и превращаться в воду.

4) Корабельный врач Роберт Майер в 1840 году во время плавания на остров Яву заметил, что после шторма вода в море всегда теплее, чем до него.

Вычисление работы.

В механике работа определяется как произведение модулей силы и перемещения: A=FS. При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.


Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис.). Будем медленно нагревать газ до температуры T 2 . Газ будет изобарно расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = pS тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле A =F Δ l =pS Δ l =p Δ V , A= p Δ V

где ΔV - изменение объема газа. Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.

Почему при сжатии или расширении меняется внутренняя энергия тела? Почему при сжатии газ нагревается, а при расширении охлаждается?

Причиной изменения температуры газа при сжатии и расширении является следующее: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется .

  • Если газ сжимается, то при столкновении движущийся навстречу поршень передаёт молекулам часть своей механической энергии, в результате чего газ нагревается;
  • Если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются. в результате чего газ охлаждается.

При сжатии и расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Работа внешних сил, действующих на газ

  • При сжатии газа, когда ΔV = V 2 – V 1 < 0 , A>0, направления силы и перемещения совпадают;
  • При расширении, когда ΔV = V 2 – V 1 > 0 , A<0, направления силы и перемещения противоположны.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

pV 1 = m/M*RT 1 ; pV 2 =m/M* RT 2 ⇒

p (V 2 − V 1 )= m/M* R (T 2 − T 1 ).

Следовательно, при изобарном процессе

A = m/M* R Δ T .

Если m = М (1 моль идеального газа), то при ΔΤ = 1 К получим R = A . Отсюда вытекает физический смысл универсальной газовой постоянной : она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Геометрическое истолкование работы:

На графике p = f(V) при изобарном процессе работа равна площади заштрихованного на рисунке а) прямоугольника.


Если процесс не изобарный (рис. б), то кривую p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна площади заштрихованной фигуры. При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке в.

При деформации конструкций происходит перемещение точек приложения внешних сил, при этом внешние силы на заданных перемещениях совершают работу.

Вычислим работу некоторой обобщенной силы (рис. 2.2.4), которая возрастает от нуля до заданной величины достаточно медленно, чтобы можно было пренебречь силами инерции перемещаемых масс. Такую нагрузку принято называть статической.

Рис.2.2.4

Пусть в произвольный момент деформации силе соответствует обобщенное перемещение. Бесконечно малое приращение силы на величину
вызовет бесконечно малое приращение перемещения
. Очевидно, что элементарная работа внешней силы, если пренебречь бесконечно малыми величинами второго порядка,

Полная работа, совершенная статически приложенной обобщенной силой , вызвавшей обобщенное перемещение,

. (2.2.5)

Полученный интеграл представляет собой площадь диаграммы
, которая для линейно деформированных систем является площадью треугольника с основанием окончательного значения перемещенияи высотой окончательного значения силы

(2.2.6)

Рис. 2.2.5

Таким образом, действительная работа при статическом действии обобщенной силы на упругую систему равна половине произведения окончательного значения силы на окончательное значение соответствующего ей обобщенного перемещения (теорема Клапейрона).

В случае статического действия на упругую систему нескольких обобщенных сил работа деформаций равна полусумме произведений окончательного значения каждой силы на окончательное значение соответствующего суммарного перемещения

(2.2.7)

и не зависит от порядка нагружения системы.

Работа внутренних сил.

Внутренние силы, возникающие при деформировании упругих систем, также совершают работу.

Рассмотрим элемент стержня длиной
(рис. 2.2.6). В общем случае для плоского изгиба действие удаленных частей стержня на оставленный элемент выражается равнодействующими осевыми силами
, поперечными силамии изгибающими моментами
. Эти усилия, показанные на рис 2.2.6 сплошными линиями, по отношению к выделенному элементу являются внешними.

Рис.2.2.6

Внутренние силы, показанные штриховыми линиями, препятствуют деформации, вызываемой внешними силами, равны им по величине и обратны по направлению.

Вычислим работу, совершенную отдельно каждым внутренним силовым фактором.

Пусть элемент испытывает только действие осевых усилий, равномерно распределенных по сечению (рис. 2.2.6).

Рис. 2.2.7

Удлинение элемента в результате этого

,

Работа, постепенно возрастающих от нуля до величины
внутренних сил на этом перемещении.

. (2.2.8)

Работа внутренних сил отрицательна, поэтому в полученной формуле стоит знак «минус».

Рассмотрим теперь элемент, находящийся под действием изгибающих моментов (рис. 2.2.8).

Взаимный угол поворота сечений элемента

.

Работа изгибающих моментов

. (2.2.9)

Рис. 2.2.8

Работу постепенно возрастающих внутренних поперечных сил с учетом распределения касательных напряжений по поперечному сечению и на основании закона Гука можно записать в следующем виде

, (2.2.10)

где - коэффициент, зависящий от формы поперечного сечения.

Если стержень подвергается кручению, элементарная работа постепенно возрастающих крутящих моментов

(2.2.11)

Наконец в общем случае действия на брус в сечениях имеем шесть внутренних силовых факторов, работу которых можно определить по формуле

При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис. 1). Будем медленно нагревать газ до температуры T 2 . Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = pS тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

\(~A = F \Delta l = pS \Delta l = p \Delta V, \qquad (1)\)

где ΔV - изменение объема газа. Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.

Сила давления газа выполняет работу только в процессе изменения объема газа .

При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0), положительную работу совершают внешние силы А’ = -А > 0.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

\(~pV_1 = \frac mM RT_1 ; pV_2 = \frac mM RT_2 \Rightarrow\) \(~p(V_2 - V_1) = \frac mM R(T_2 - T_1) .\)

Следовательно, при изобарном процессе

\(~A = \frac mM R \Delta T .\)

Если m = М (1 моль идеального газа), то при ΔΤ = 1 К получим R = A . Отсюда вытекает физический смысл универсальной газовой постоянной: она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

На графике p = f (V ) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.

Если процесс не изобарный (рис. 2, б), то кривую p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет

\(~A = \lim_{\Delta V \to 0} \sum^n_{i=1} p_i \Delta V_i\), или \(~A = \int p(V) dV,\)

т.е. будет равна площади заштрихованной фигуры. При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.

Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p (V ).

Таким образом, газ при расширении совершает работу. Приборы и агрегаты, действия которых основаны на свойстве газа в процессе расширения совершать работу, называются пневматическими . На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и др.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 155-156.






Работа газа

    1. Первый закон термодинамики

Существование двух способов передачи энергии термодинамической системе позво­ляет проанализировать с энергетической точки зрения равновесный процесс перехода системы из какого-либо начального состоя­ния 1 в другое состояние 2 . Изменение внутренней энергии системы

U 1-2 = U 2 - U 1

в таком процессе равно сумме работы A 1-2 совершаемой над системой внешними силами и теплоты Q 1-2 сообщенной системе:

U 1-2 = A 1-2 + Q 1-2 (2. 3 )

Работа A 1-2 численно равна и противопо­ложна по знаку работе A 1-2 , совершае­мой самой системой против внешних сил в том же процессе перехода:

A 1-2 = - A 1-2 .

Поэтому выражение (2.6) можно переписать иначе:

Q 1-2 = U 1-2 + A 1-2 (2. 3 )

Первое начало термодинамики: теплота, сообщаемая системе, расходуется на изменение внутренней энергии системы и на совершение системой работы против внешних сил.

Q = dU + A (2. 3 )

dU – внутренняя энергия, является полным дифференциалом.

Q и A не являются полными дифференциалами.

Q 1-2 =
(2. 3 )


.

Исторически установление первого начала термодинамики было связано с неудачами создания вечного двигателя первого рода (перпетуум мобиле), в котором машина совершала бы работу не получая извне тепла и не затрачивая при этом никакого вида энергии. Первый закон термодинамики говорит о невозможности построения такого двигателя.

Q 1-2 = U 1-2 + A 1-2

    1. Применение первого начала термодинамики к изопроцессам.

      1. Изобарный процесс.

р = const

A = = p ( V 2 - V 1 ) = p V ,

где р – давление газа, V – изменение его объема.

Т.к. PV 1 = RT 1 ; PV 2 = RT 2,

то V 2 - V 1 = (T 2 T 1 ) и

А = R (T 2 T 1 ); (2. 3 )

Таким образом, получаем, что универсальная газовая постоян­ная R равна работе, которую совершает моль идеального газа при повышении его температуры на один Кельвин при постоян­ном давлении.

Учитывая выражение (2.10), уравнение первого начала термодинамики (2.8) можно записать следующим образом

Q = dU + pdV. (2. 3)

      1. Изохорный процесс

V = const , следовательно, dV = 0

А = p V = 0

Q = U .

Q = U = R T (2. 3 )

    1. Изотермический процесс

Т = const ,

U = 0 внутренняя энергия идеального газа не изменяется, и

Q = А

A = =
= RTln (2. 3 )

Для того, чтобы температура газа при расширении не уменьшалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения, т.е. А = Q .

Практически, чем медленнее протекает процесс, тем с большей точностью его можно считать изотермическим.

Графически работа при изотермическом процессе численно равна площади заштрихованной проекции на рис.

Сравнивая площади фигур под участками изотермы и изобары можно сделать вывод, что расширение газа от объема V 1 до объема V 2 при одинаковом начальном значении давления газа сопровождается в случае изобарного расширения совершением большей работы.

    1. Теплоемкость газов

Теплоемкостью С какого-либо тела называется отношение бесконечно малого количества теплоты d Q , полученного телом, к соответствующему приращению dT его температуры:

C тела = (2. 3 )

Эта величина измеряется в джоулях на кельвин (Дж/К).

Когда масса тела равна единице, теплоемкость называется удельной. Её обозначают малой буквой с. Она измеряется в джо­улях на килограмм . кельвин (Дж/кг . К).Между теплоемкостью моля вещества и удельной теплоем­костью того же вещества существует соотношение


(2. 3 )

Используя формулы (2.12) и (2.15), можно записать


(2. 3 )

Особое значение имеют теплоемкости при постоянном объеме С V и постоянном давлении С р . Если объем остается постоянным, то dV = 0 и согласно первому началу термодинамики (2.12) вся теп­лота идет на приращение внутренней энергии тела

Q = dU (2. 3 )

Из этого равенства вытекает, что теплоемкость моля идеального газа при постоянном объеме равна


(2. 3 )

Отсюда dU = C V dT , а внутренняя энергия одного моля идеального газа равна

U = C V T (2. 3 )

Внутренняя энергия произвольной массы газа т определяется по формуле


(2. 3 )

Учитывая, что для 1 моля идеального газа

U = RT ,

и считая число степеней свободы i неизменным, для молярной теплоемкости при постоянном объеме получаем

C v = = (2. 3 )

Удельная теплоемкость при постоянном объеме

с v = = (2. 3 )

Для произвольной массы газа справедливо соотношение:

Q = dU = RdT ; (2. 3 )

Если нагревание газа происходит при постоянном давле­нии, то газ будет расширяться, совершая над внешними силами положительную работу. Поэтому теплоемкость при постоянном давлении должна быть больше, чем теплоемкость при постоян­ном объеме.

Если 1 молю газа при изобарном процессе сообщается количество теплоты Q то введя понятие молярной теплоемкости при постоянном давлении С р = можно записать

Q = C p dT ;

где C p – молярная теплоемкость при постоянном давлении.

Т.к. в соответствии с первым началом термодинамики

Q = A + dU = RdT + RdT =

=(R + R)dT = (R + С V )dT,

то

С р == R + С V . (2. 3 )

Это соотношение называется уравнением Майера :

Выражение для С р можно также записать в виде:

С р = R + R =
. (2. 3 )

Удельную теплоемкость при постоянном давлении с p определим, разделив выражения (2.26) на :

с p =
(2. 3 )

При изобарном сообщении газу массой m количества теплоты Q его внутренняя энергия возрастает на величину U = C V T , а количество теплоты, переданное газу при изобарном процессе, Q = C p T .

Обозначив отношение теплоемкостей буквой , получим

(2. 3 )

Очевидно, 1 и зависит только от сорта газа (числа сте­пеней свободы).

Из формул (2.22) и (2.26) следует, что молярные теплоем­кости определяются лишь числом степеней свободы и не зависят от температуры. Это утверждение справедливо в довольно широ­ком интервале температур лишь для одноатомных газов только с поступательными степенями свободы. У двухатомных газов число степеней свободы, проявляющееся в теплоемкости, зависит от температуры. Молекула двухатомного газа обладает тремя поступательными, степенями свободы: поступательными (3), вращательными (2) и колебатель­ными (2).

Таким образом, суммарное число степеней свободы достигает 7 и для молярной теплоемкости при постоянном объеме мы должны получить: С V = .

Из экспериментальной зависимости молярной теплоемкости водорода следует, что С V зависит от температуры: при низкой температуре ( 50 K ) С V = , при комнатной С V = и очень высокой - С V = .

Расхождение теории и эксперимента объясняется тем, что при вычислении теплоемкости надо учитывать квантование энергии вращения и колебаний молекул (возможны не любые вращательные и колебательные энергии, а лишь определенный дискретный ряд значений энергий). Если энергия теплового движения недоста­точна, например, для возбуждения колебаний, то эти колебания не вносят своего вклада в теплоемкость (соответствующая степень свободы "замораживается" - к ней неприменим закон равномерного распределения энергии). Этим объ­ясняется последовательное (при определенных температурах) возбуждение степеней свободы, поглощающих тепловую энергию, и приведенная на рис. 13 зависимость C V = f ( T ).

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая постоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро )

Масс у , в свою очередь, можно вычислить, как произведение плотности и объема .

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

протекает при постоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Внутренняя энергия одноатомного и двухатомного идеального газа

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина , в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вно вь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы – помните о студенческом сервисе , специалисты которого готовы в любой момент прийти на выручку.