ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Кто впервые сформулировал принцип дополнительности. Принцип дополнительности, его проявления и сущность

Принцип наблюдаемости

Важную роль в становлении физики XX в. сыграл принцип наблюдаемости: в науку должны вводиться только те утверждения, которые можно хотя бы мысленно, хотя бы в принципе проверить на опыте. впервые в физике XX в. принцип наблюдаемости был использован при создании теории относительности. Требование наблюдаемости заставило Эйнштейна ввести определение одновременности, проверяемое на опыте. В сущности, все следствия специальной теории относительности вытекают из этого определения. Принципом наблюдаемости и принципом соответствия, согласно которому любая теория должна переходить в предыдущую, менее общую теорию в тех условиях, в каких эта предыдущая была установлена, физики руководствовались при создании квантовой механики. Соотношение неопределенностей, т. е. взаимная неопределенность понятий координаты и скорости, есть результат ограниченной наблюдаемости этих величин.

Однако развитие теоретической физики, особенно во второй половине XX в., показало, что требование наблюдаемости не должно применяться слишком жестко.

Так, в квантовой механике замкнутые уравнения существуют не для наблюдаемых величин, а для волновой функции, через которую наблюдаемые выражаются квадратично.

Уже в классических теориях поля в электродинамике и теории гравитации уравнения удобнее и проще формулировать не в терминах наблюдаемых физических полей, а для вспомогательных полей (векторного потенциала в электродинамике или метрического тензора в теории тяготения). Эти поля допускают целый класс преобразований (калибровоч-ные преобразования), не изменяющих наблюдаемые величины. При квантовании введение таких калибровочных полей делается принципиально необходимым.

Поучительна история так называемой S- матрицы или матрицы рассеяния, предложенной Гейзенбергом в 1943 г. Это способ записать в компактной форме все результаты возможных экспериментов по изучению системы. Введение S- матрицы позволило получить много важных соотношений. Успех этого метода привел в 50-х гг. к идее получить замкнутые уравнения для матрицы рассеяния, связывающие между собой все возможные амплитуды рассеяния, и таким образом построить теорию элементарных частиц, не обращаясь к их внутреннему устройству, связывая непосредственно данные эксперимента. Но S-матрица имеет дело только с поведением частиц, разведенных на большие расстояния, где они изолированы друг от друга. Поэтому в ней теряются такие частицы, как кварки, не существующие в изолированном виде. Не исследуя механизм взаимодействия элементарных частиц и полей на малых расстояниях, невозможно построить разумную теорию. Требование буквальной наблюдаемости оказалось слишком стеснительным для современной физики.

Дополнительность

В период мучительных споров, вызванных противоречием между вероятностным характером предсказании квантовой теории и однозначной причинностью классической физики, Нильс Бор ввел принцип дополнительности, согласно которому некоторые понятия несовместимы и должны восприниматься только как дополняющие друг друга. Соотношение неопределенностей представляет собой количественное выражение этого принципа, применимого во многих областях. Идея дополнительности позволяет понять и примирить такие противоположности, как физическая закономерность и целенаправленное развитие живых объектов. Ниже мы обсудим этот принцип более подробно.

Теория познания Эйнштейна не допускала вероятностного описания действительности. Для Бора же идея дополнительности сделала вероятностную интерпретацию не только естественной, но и необходимой.

Принцип причинности

Один из важнейших принципов, ограничивающих поиски новых теорий - принцип причинности. Физики под этим понимают тезис, согласно которому причина должна предшествовать следствию. Такое требование на первый взгляд кажется очевидным, вытекающим из определения понятий причины и следствия. Однако содержательность принципа причинности состоит именно в том, что он может не выполняться и допускает экспериментальную проверку. Согласно принципу наблюдаемости нужно прежде всего определить причинность в форме, позволяющей проверку, подобно тому как это сделал Эйнштейн с понятием одновременности.

Пусть В есть следствие А. Допустим, что причина А отличалась от нуля в течение очень малого интервала времени вблизи момента t. Если причинность соблюдается, то следствие В будет отлично от нуля только в моменты t, более поздние, чем t. В принципе это запаздывание можно измерить. Если обнаружится, что В существует при t меньших чем t, значит причинность нарушена.

Запишем наше определение причинности в более конкретной форме. Скажем, А - волна, падающая на рассеиватель, а В - волна рассеяния. Тогда символически B=SA. Назовем S функцией рассеяния. Тот факт, что, согласно причинности, В в момент t определяется значениями A R предшествующие моменты, накладывает жесткие ограничения на свойства функции рассеяния S. Эти ограничения можно проверить на опыте.

Чтобы сохранить причинность при поисках новых уравнений, ставится требование локальности взаимодействий. Это означает, что взаимодействие, скажем, частицы с полем определяется значением поля в той точке пространства и времени, в которой находится частица. В случае двух полей взаимодействие определяется их значениями в одной и той же точке пространства-времени.

Взаимодействие между двумя полями в разных точках передается с помощью того же или другого поля со скоростью, согласно теории относительности, не превышающей скорости света. Этим обеспечивается причинность: следствие сдвинуто по сравнению с причиной на время распространения взаимодействия. Так, взаимодействие между двумя движущимися электронами осуществляется через посредство электромагнитного поля, локально взаимодействующего с каждым из электронов.

Локальность уравнений есть количественное выражение идеи близко-действия, принятой в физике еще в прошлом веке.

Требование локальности ограничивает поиски уравнений и делает их более красивыми.

Во всех сделанных до сих пор экспериментах причинность соблюдалась. Однако для сверхмалых масштабов, на которых, как мы увидим, происходят значительные флуктуации геометрии пространства-времени, понятия “до” и “после” делаются неопределенными и смысл причинности может измениться.

Теория относительности и теория тяготения

История создания специальной теории относительности (СТО) - один из лучших примеров того, как конкретная философия дает толчок науке. Идея о том, что в науке не должно быть понятий, которые нельзя сформулировать на языке реального или мысленного эксперимента - принцип наблюдаемости,- заставила Эйнштейна подвергнуть сомнению интуитивное понятие одновременности и ввести определение, проверяемое на опыте. Из этого определения немедленно следуют все результаты специальной теории относительности - и Лоренцово сокращение, и замедление процессов в движущейся системе координат, если наблюдать за ними из неподвижной.

Относительность одновременности

В популярной статье 1898 г. “Измерение времени” Анри Пуанкаре высказал замечательную мысль об условности определения одновременности. Обсуждалась только одновременность событий в двух удаленных точках неподвижной системы координат. Пуанкаре заключает: “Одновременность двух событий или порядок их следования, равенство двух длительностей должны определяться таким образом, чтобы формулировка законов природы была настолько простой, насколько это возможно. Другими словами, все эти правила, все эти определения являются лишь плодом неосознанного соглашения”.

Для двух точек неподвижной системы координат выбора нет; единственное приемлемое для физика “соглашение” - устанавливать одновременность двух событий с помощью световых сигналов, используя проверенное на опыте постоянство скорости света в пустоте. По Эйнштейну, в любой инерциальной системе координат вспышки света в разных точках считаются одновременными, если свет одновременно приходит в точку, лежащую на равном расстоянии от них. Из этого определения сразу же следует относительность одновременности: события, одновременные для неподвижного наблюдателя, неодновременны для движущегося.

Из мысли об условности одновременности два великих человека - Пуанкаре и Эйнштейн - сделали разные выводы. Эйнштейн, установив относительность одновременности в разных инерциальных системах, заключает, исходя из принципа наблюдаемости, что время течет по-разному для неподвижного и движущегося объекта. Пуанкаре же принял ньютонову концепцию абсолютного времени и пространства. Он придер-живался конвенционалистской философии, согласно которой в основе математических и естественнонаучных теорий лежат произвольные соглашения. Пуанкаре считал утверждения Эйнштейна условными и не принял теорию относительности.

Лоренц, Пуанкаре и СТО

Теория, выдвинутая Лоренцом и развитая Пуанкаре, отличается от той, которую мы называем теорией относительности. У Лоренца и у Пуанкаре, в отличие от Эйнштейна, лоренцово сжатие получается не как неизбежное следствие кинематики, а как результат изменения баланса сил между молекулами твердого тела при движении.

В 1909 г. в Геттингене Пуанкаре прочел лекцию “Новая механика”, где перечислил постулаты, принятые в его теории: 1) независимость физических законов от выбранной инерциальной системы; 2) скорость материального тела не должна превышать скорости света; и, наконец, 3) тела сжимаются вдоль движения. Об этом третьем постулате Пуанкаре говорил: “Необходимо принять гораздо более странную гипотезу, противоречащую всему, к чему мы привыкли: тело при движении испытывает деформацию в направлении движения... как ни странно, приходится признавать, что эта третья гипотеза превосходно подтверждена...” Из этих слов видно, что, с позиции Лоренца - Пуанкаре, сокращение Лоренца выглядит удивительным событием, которое почему-то должно выполняться для всех видов сил. Между тем у Эйнштейна оно является прямым следствием его двух постулатов: требования неизменности законов природы при изменении инерциальной системы и постоянства скорости света.

Идея произвольных соглашений неприменима в опытных науках. Системы координат Птолемея и Коперника логически равноправны, но без “соглашения” Коперника не были бы найдены законы Кеплера и закон тяготения. Можно построить новую механику и на “соглашении” Лоренца - Пуанкаре. Но именно из-за третьего постулата она была бы несравненно сложнее теории относительности. Так, в этой теории, например, приходится выяснять вид сил, обеспечивающих равновесие электрона, вводить “давление Пуанкаре”.

Очевидно, что без перехода к гелиоцентрической системе не было бы небесной механики, так же как без “соглашения” Эйнштейна не было бы ни теории тяготения, ни современных теорий поля.

Из всех возможных соглашений только одно приводит к новому качеству. Это и доказывает неприемлемость конвенционализма.

Лоренц и Пуанкаре внесли глубочайший вклад в теорию относительности, но не сделали того переворота, который совершил Эйнштейн. После работы Пуанкаре 1898 г. и работы Лоренца 1904 г. оставалось сделать еще одно решительное усилие - принять относительность пространства-времени, но этот шаг требовал другого типа мышления, другой философии. Лоренцу помешала его глубокая приверженность философии физики прошлого века. Могучая математическая интуиция Пуанкаре оказалась непригодной для этой задачи - здесь требовалась интуиция физическая. Его математическое прошлое, возможно, и породило слишком гибкую конвенционалистскую теорию познания, несовместимую с философией физики.

В статье “Анри Пуанкаре и физические теории” Луи де Бройль говорил: “Молодой Альберт Эйнштейн, которому в то время исполнилось лишь 25 лет и математические знания которого не могли идти в сравнение с глубокими познаниями гениального французского ученого, тем не менее раньше Пуанкаре нашел синтез, сразу снявший все трудности, использовав и обосновав все попытки своих предшественников. Этот решающий удар был нанесен мощным интеллектом, руководимым глубокой интуицией и пониманием природы физической реальности...”

Теория тяготения и современная физика

Общая теория относительности или теория тяготения представляет собой обобщение специальной на неинерциальные системы. На современную теоретическую физику теория тяготения оказала влияние не только сама по себе. Главную роль сыграли те общие идеи, которые Эйнштейн использовал при ее создании. Это, прежде всего, идея о том, что нужно искать уравнения для поля тяготения. Было несколько попыток (одна из них принадлежала Пуанкаре) объяснить поправки к небесной механике, рассматривая звезды как систему тяготеющих центров с запаздывающим взаимодействием, т. е. с учетом конечной скорости распространения взаимодействия. Эйнштейн сразу же отказался от этого направления и ввел полевые переменные.

Трудно представить себе более поучительное занятие для молодого физика-теоретика, чем изучение десятилетней истории создания теории тяготения. Эйнштейна поразила колоссальная точность, с которой соблюдается принцип эквивалентности,- пропорциональность весовой и инертной масс для любого тела, независимо от его устройства. Он начал, как и полагается физику, с простейших следствий, вытекающих из принципа эквивалентности сил гравитации и “сил инерции” для равноускоренного и вращательного движений. Универсальность принципа эквивалентности убедила Эйнштейна в необходимости той удивительной связи геометрии с гравитацией, которая следует из его теории тяготения. С помощью своего университетского сокурсника Гросмана он понял, что для обобщения его идей на случай произвольных систем координат нужно использовать Риманову геометрию, затем овладел соответствующей техникой и поставил задачу нахождения общековариантных уравнений, связывающих четырехмерную геометрию с плотностью материи.

Уравнения Эйнштейна обладают свойством калибровочной инвариантности. Это означает, что существует широкий класс преобразований метрического тензора, не изменяющих физические свойства гравитационного поля, подобно тому как остаются неизменными электрические и магнитные поля при определенных преобразованиях описывающего их векторного потенциала. Калибровочная инвариантность - характерная черта всех современных теорий поля. К сожалению, без формул лучше пояснить это невозможно.

Еще одна особенность современных теорий поля, использованная при создании уравнений тяготения,- требование симметрии. Уравнения тяготения получаются, как уже упоминалось, из требования ковариантности (одинаковой вариантности) всех слагаемых уравнения при произвольных локальных преобразованиях координат.

Таким образом, общие идеи теории тяготения, включая и неосуществленные попытки создать теорию поля, объединяющую гравитацию и электродинамику, повлияли на ход развития и направление поисков современной теоретической физики. Из всех существующих физических теорий теория тяготения, возможно, самая совершенная с эстетической и философской точек зрения. Ландау считал ее самой красивой.

Нужно ли искать альтернативу этой теории? Теория тяготения логически замкнута и однозначно описывает экспериментальные данные. Поэтому, как мне кажется, нет пи экспериментальных, ни теоретических оснований для поисков альтернативного описания. Впрочем, понятие красоты не абсолютно объективно и поэтому может появиться теория, которая авторам покажется более красивой. Но она будет вправе претендовать на научную ценность только в том случае, если объяснит какие-либо явления, необъяснимые с точки зрения классической теории тяготения. Попытки новой интерпретации уже завершенной теории, как правило, выдвигаются теми научными работниками, которых Паули иронически называл “Grundleger und Neubegrunder”. Этот вид активности если и помогает развитию науки, то только косвенно, побуждая точнее формулировать основы уже существующей и доказавшей свою плодотворность теории.

Квантовая теория

Философские аспекты квантовой механики не раз обсуждались на страницах этого журнала. Мне придется повторить несколько известных истин, чтобы показать их связь с конкретной философией.

Главное открытие квантовой теории - вероятностное описание микромира. Волновая функция, описывающая поведение частиц,- не физическое поле, а поле вероятности. Этим объясняются все удивительные особенности квантовой теории.

Принцип дополнительности

Прежде несколько слов о неожиданной диалектике Нильса Бора. Бор говорил: “Каждое высказанное мною суждение надо понимать не как утверждение, а как вопрос”. Или: “Есть два вида истины-тривиальная, отрицать которую нелепо, и глубокая, для которой обратное утверждение - тоже глубокая истина”. Можно сформулировать эту мысль иначе: содержательность утверждения проверяется тем, что его можно опровергнуть. Вот еще слова Бора: “Никогда не выражайся яснее, чем ты думаешь”. На вопрос, какое понятие дополнительно понятию истины, Бор ответил: “Ясность”.

Принцип дополнительности, о котором сейчас пойдет речь,- вершина боровской диалектики.

Слова Гегеля о единстве и борьбе противоположностей, как и всякое слишком общее суждение, от частого употребления сделались тривиальными. Боровская идея дополнительности дает мысли Гегеля новое воплощение.

В начале 1927 г. произошли два важных события: Вернер Гейзенберг получил соотношение неопределенностей, а Нильс Бор сформулировал принцип дополнительности.

Анализируя все возможные мысленные эксперименты по измерению координаты и скорости частицы, Гейзенберг пришел к заключению, что возможность одновременного их измерения ограничена.

Мы недаром употребляем слово “неопределенность” - не ошибка, не незнание, а именно неопределенность. Ведь принципиальная невозможность измерить означает, согласно принципу наблюдаемости, неопределенность самого понятия,

Соотношение неопределенностей Гейзенберга есть количественное проявление принципа дополнительности Бора. Вот несколько примеров дополнительности понятий.

Частица-волна - две дополнительные стороны единой сущности. Квантовая механика синтезирует эти понятия, поскольку она позволяет предсказать исход любого опыта, в котором проявляются как корпускулярные, так и волновые свойства частиц.

Непрерывность и скачкообразность физических явлений - понятия дополнительные. Измерения всегда приводят к непрерывным функциям. В реальности скачки, хоть и на малом интервале, но сглажены. Так, в атомах энергетические скачки сглажены конечной шириной спектральных линий, в фазовых переходах - конечным числом молекул образна. Б этом смысле утверждение древних “природа не делает скачков” правильно. Но вместе с тем такое сглаживание не снимает скачкообразную закономерность, она остается как разумное приближение, точность которого растет по мере выключения сглаживающих явлений.

Существует вызывающая много споров проблема - как логически согласовать необратимость макроскопических явлений с обратимостью уравнений механики, которая определяет движение отдельных частиц макроскопической системы? Как однозначные законы механики частиц согласуются с вероятностным описанием статистической физики?

Замечательный ленинградский физик-теоретик Николай Сергеевич Крылов, скончавшийся, когда ему еще не было и 30 лет, в своей книге “Обоснование статистической физики” глубоко проанализировал упомянутую трудность и впервые ввел понятие “перемешивания” в фазовом пространстве как необходимое условие статистического описания. Он высказал мысль о том, что существует дополнительность между статисти-ческими характеристиками - температурой, плотностью, давлением и микроскопическим описанием частиц, входящих в систему. Крылов показал, что попытка определить координаты и скорости частиц исключает возможность статистического описания. К несчастью, ранняя смерть не позволила ему развить эту идею.

Физическая картина явления и его строгое математическое описание дополнительны. Создание физической картины требует качественного подхода, пренебрежения деталями и уводит от математической точности. И наоборот - попытка точного математического описания настолько усложняет картину, что затрудняет физическое понимание. В этом смысл слов Бора, утверждавшего, что ясность дополнительна истине.

Бор много сделал для применения идеи дополнительности в других областях знаний. Сводятся ли биологические закономерности к физико-химическим процессам? Все биологические процессы определяются движением частиц, составляющих живую материю. Но такой взгляд отражает только одну сторону дела. Другая сторона, более важная - закономерности живой материи, которые хотя и определяются законами физики и химии, но не сводятся к ним. Для биологических процессов характерна финалистическая закономерность, отвечающая на вопрос “зачем”. Физика же интересуется только вопросами “почему” и “как”. Правильное понимание возможно только на основе взаимодополнительного описания биологии, единства физико-химической причинности и биологической це-ленаправленности.

Согласно Бору, проблема свободы воли решается дополнительностью мыслей и чувств - пытаясь анализировать переживания, мы их изменяем, и наоборот - отдаваясь чувствам, теряем возможность анализа.

Лингвист как-то пожаловался мне, что трудно примирить два направления, существующие в его науке. Одни утверждают, что смысл фразы целиком определяется совокупностью входящих в нее слов. Другие, в том числе мой собеседник, считают, что слова - это лишь символы, намекающие на содержание. В пример он приводил фразу: “У кого в 1978 г. была А. П. Иванова со своим пульпитом?” Ясно, что врач спрашивает, у какого специалиста лечилась раньше его пациентка. Но как сконструировать машину для перевода, которая правильно передала бы смысл?

Я предложил моему знакомому обратиться к идеям Бора. Через некоторое время он написал мне: “Ваша мысль о принципе дополнительности применительно к двум сторонах языка хороша и пришлась кстати. Она позволяет осмыслить противоречивость этих двух сторон как благо, как свидетельство известной целостности, а не как занозу...”.

В физике идея Бора приводит к количественным соотношениям, что и доказывает ее важность. В других областях идея дополнительности на первый взгляд кажется почти тривиальной. Однако ее ценность доказывается тем, что она помогает в поисках направления развития: в приведенном примере - выработать рациональные пути построения машины для перевода.

Особенности квантовой теории

Из принципа дополнительности следуют все непривычные особенности квантовой теории. Перечислим некоторые из них.

1. Предсказания квантовой механики неоднозначны; они дают лишь вероятность того или иного результата.

Эта неоднозначность противоречит детерминированности классической физики. Успехи небесной механики в XVII-XVI II вв. внушили глубокую веру в возможность однозначных предсказаний. Пьер Лаплас говорил: “Разум, который для какого-нибудь данного момента знал бы все силы, действующие в природе, и относительное расположение ее составных частей, если бы он, кроме того, был достаточно обширен, чтобы подвергнуть эти данные анализу, обнял бы в единой формуле движения самых” огромных тел во Вселенной и самого легкого атома; для него не было бы ничего неясного, и будущее, как и прошлое, было бы у него перед глазами...”. Иными словами, зная координаты и скорости всех частиц, можно предсказать будущее и узнать прошлое Вселенной. Так же детерминированы и предсказания классической электродинамики.

В квантовой механике неопределенность принципиальна, она следует из дополнительности квантовой природы микрообъектов в классических методов описания. Определить состояние системы, задав “координаты и скорости всех частиц”, невозможно. Самое большее, что можно сделать,- задать в начальный момент волновую функцию, описывающую вероятность тех или иных значений координат и скоростей. Квантовая механи-ка позволяет найти волновую функцию в любой более поздний момент. Причинность в лапласовом смысле нарушена, но в более точном квантово-механическом понимании она соблюдается. Из максимально полно определенного начального состояния однозначно следует единственное конечное состояние. Изменился только смысл слова “состояние”.

2. Вероятностное описание физических явлений (статистическая (физика) до квантовой механики возникало при описании сложных систем, где малое изменение начальных условий за достаточно большое время приводит к сильному изменению состояния. Эти системы описываются строго однозначными уравнениями классической механики, и вероятность появляется при усреднении по интервалу начальных состояний.

В противоположность этому, согласно квантовой механике, вероятное описание справедливо как для сложных, так и для самых простых систем и не требует никакого дополнительного усреднения начальных условий.

3. Причина вероятностного характера предсказаний в том, что свойства микроскопических объектов нельзя изучать, отвлекаясь от способа наблюдения. В зависимости от него электрон проявляет себя либо как волна, либо как частица, либо как нечто промежуточное. Разумеется, есть свойства, не зависящие от способа наблюдения: масса, заряд, спин частицы, барионный заряд, магнитный момент... Но всякий раз, когда мы хотим одновременно измерить какие-либо дополнительные друг другу величины, результат будет зависеть от способа наблюдения. Это свойство квантовых объектов В. А. Фок называл “относительностью к средствам наблюдения”.

Причины этого неустранимы - мы вынуждены описывать квантовые объекты на языке классической физики, на котором говорят наши средства наблюдения и на котором мы формулируем свои мысли. Мы неизбежно пользуемся субъективными инструментами для описания объективного, но ничего при этом не теряем. Мы как бы узнаем форму многомерного предмета, изучая его трехмерные проекции, рассекая его по разным плоскостям.

4. Волновая функция - не физическое поле, а поле информации. После каждого измерения волновая функция изменяется скачком. В самом деле, пусть электрон имеет определенный импульс. В этом состоянии до падения на фотопластинку электрон можно было бы с одинаковой вероятностью найти в любом -месте; после почернения зерна пластинки неопределенность его положения за ничтожное время изменилась скачком - теперь она задается размером зерна.

Ясно, что никакое физическое поле не может обладать такими свойствами. Из-за конечной скорости распространения света нельзя за короткое время изменить физическое поле в большой области пространства. Скачкообразное изменение волновой функции означает только другой тип наблюдения, другое дополнительное условие - в нашем примере мы ищем волновую функцию сначала при условии, что отобран заданный импульс электрона, а затем при условии, что почернело данное зерно. Вот близкая аналогия: представим себе телескоп, быстро переведенный с одной звезды на другую, далекую,- произошел лишь отбор места наблюдения, не связанный ни с какими физическими воздействиями телескопа на звезды или одной звезды на другую.

5. В квантовой механике выполняется принцип суперпозиции - полная волновая функция складывается из волновых функций взаимоисключающих событий. Как мы знаем, в электродинамике принцип суперпозиции нарушается в сильных полях. Можно представить себе такую квантовую теорию, где этот принцип в некоторых условиях перестанет точно соблюдаться и для волновой функции. Но почти невозможно представить квантовую теорию, в которой нарушались бы соотношение неопределенностей и вероятностное толкование волновой функции.

Эйнштейн и Бор

Глубокие физические идеи - всегда плод философского осмысления физики. Во всех главных своих творениях - гипотеза световых квантов, теория относительности, теория тяготения, космология - Эйнштейн выступал как философ физики.

У Бора дар философского осмысления проявился при создании физической интерпретации квантовой теории. Философские идеи Бора подготовили подсознание физиков для таких открытий, как соотношение неопределенностей и вероятностное толкование волновой функции.

Интересно проследить, как развивались взгляды этих двух великих философов физики.

До 1925 г. Бор - будущий создатель принципа дополнительности - выступал против эйнштейновой гипотезы световых квантов, пытаясь сохранить классическую электродинамику. Между тем открытый Эйнштейном в 1905 г. дуализм волн-частиц был первым физическим примером дополнительности. Позже, когда почти все физики приняли вероятностную интерпретацию волновой функции, Эйнштейн отнесся к этому толкованию отрицательно, хотя сам в работе 1916 г. впервые ввел вероятности переходов...

Их спор о физическом смысле квантовой механики и о справедливости соотношения неопределенностей продолжался много лет, начиная с 1927 г. Когда Эйнштейн почувствовал, что не может найти слабого места в логике квантовой механики, он заявил, что эта вполне последовательная точка зрения противоречит его физической интуиции и, по его убеждению, не может быть окончательным решением: “Господь Бог не играет в кости...”.

В 1935 г. появилась работа Эйнштейна, Подольского и Розена “Может ли квантовомеханическое описание физической реальности считаться полным?”. Допустим, что две подсистемы некоторое время взаимодействовали, а потом разошлись на далекое расстояние. Авторы замечают: “Поскольку эти системы ужа не взаимодействуют, то в результате каких бы то ни было операций на первой системе во второй системе уже не может получиться никаких реальных изменений”. Между тем, согласно квантовой механике, с помощью измерений в первой системе можно изменить волновую функцию второй системы...

Проследим это явление на простом примере. Допустим, что мы измерили импульсы двух частиц до столкновения, и пусть после столкновения одна остается на Земле, а другая летит на Луну. Если земной наблюдатель после столкновения получит определенное значение импульса оставшейся частицы, он по закону сохранения импульса может рассчитать импульс частицы на Луне. Следовательно, волновая функция этой частицы в результате измерения на Земле определится -она соответствует определенному импульсу.

Если понимать волновую функцию как физическое поле, то такой результат невозможен. Если же учесть, что волновая функция - волна информации, он естествен: это обычное изменение вероятности предсказаний с появлением новой информации. Мы задаем вопрос: какова вероятность, что лунный экспериментатор найдет то или иное значение импульса своей частицы при дополнительном условии, что найден определенный импульс земной частицы? Это означает, что нужно взять весь набор многократных измерений импульса в обеих лабораториях и отобрать из этого набора те случаи, когда на Земле получился заданный импульс. При этом условии лунные данные будут соответствовать определенному и известному импульсу согласно закону сохранения импульса. Влияние измерений в одной подсистеме па предсказания о поведении другой подсистемы нужно понимать именно в смысле отбора случаев, соответствующих определенному условию. Понятно, что при изменении условий отбора волновая функция изменяется. Это явление есть и в классической физике, и в повседневной жизни. Вероятность предсказаний скачком изменяется при изменении условий отбора событий.

В сущности, спор Бора с Эйнштейном был спором двух философий, двух теорий познания - ясного взгляда старой физики, взращенного на классической механике и электродинамике с их однозначной детерминированностью, и более гибкой философии, вобравшей в себя новые факты квантовой физики XX в. и вооруженной принципом дополнительности.

Нужно ли искать другую интерпретацию?

Квантовая механика вместе с теорией измерений представляет собой непротиворечивую и необыкновенно красивую теорию. Все попытки ее “усовершенствовать” пока оказывались несостоятельными.

В результате бурных споров о полноте квантовомеханического описания возникла идея: не объясняется ли неопределенность в поведении электрона тем, что его состояние зависит не только от импульса, координаты и проекции спина, но еще от каких-то внутренних скрытых параметров? Тогда неопределенность результата, как и в статистической физике, возникнет из-за неопределенности этих параметров. В принципе, если бы стали известны значения скрытых параметров, предсказания сделались бы определенными, как в классической механике. При единичном предсказании подбором скрытых параметров удается получить те же результаты, что и в квантовой механике. Однако при предсказании последовательных событий это не всегда возможно. Первое измерение так ограничивает область значений скрытых параметров, что их свободы ко второму измерению уже недостаточно для согласия с квантовой механикой.

В 1965 г. Д. Белл показал, при каких экспериментах можно увидеть различие между предсказаниями квантовой механики и теории скрытых параметров. Такой опыт был выполнен в 1972 г. С. Фридманом и Д. Клаузером. Они наблюдали свет, испускаемый возбужденными атомами кальция. В условиях их эксперимента атом кальция испускал после-довательно два кванта видимого света, которые можно было отличить с помощью обычных цветовых фильтров. Каждый квант попадал в свой счетчик, проходя через поляриметр, который отбирал определенное направление поляризации. Изучалось число совпадений как функция угла между направлением поляризации двух квантов. Теория скрытых переменных предсказывала провалы на кривой, изображающей эту зависимость. На опыте не только не оказалось никаких провалов, но вся экспериментальная кривая в точности совпала с теоретической кривой, полученной из квантовой механики. Позже были поставлены другие, более точные опыты, которые тоже согласовались с квантовой механикой.

Итак, теория скрытых параметров, по крайней мере в ее теперешнем виде, противоречит опыту. Квантовая механика лишний раз подтвердилась. Но утверждение о незыблемости квантовой механики, особенно когда речь идет о неизведанной области сверхмалых масштабов, противоречило бы духу философии квантовой физики.

Квантование полей

Применение квантовой механики к электромагнитному полю и другим полям, т. е. к системам с бесконечным числом степеней свободы, не потребовало каких-либо изменений в методах описания природы, установленных теорией относительности и квантовой механикой. Для того чтобы применить квантовую механику, разработанную для систем с конечным числом степеней свободы к полю, т. е. к системе с континуальным числом степеней свободы, рассматривались все возможные колебания в ящике достаточно большого, но конечного объема. Тогда множество степеней свободы - счетное (их можно пронумеровать) - это степени свободы всех возможных стоячих волн в ящике. Квантовая механика применяется к каждому отдельному колебанию. Оказалось, что в пустом пространстве, когда в нем нет никаких реальных частиц, происходят колебания всех возможных полей, рождаются и исчезают частицы и античастицы.

Конец 20-х гг., когда начала создаваться квантовая электродинамика, можно считать началом исследования главного объекта современной фундаментальной физики - вакуума.

Квантовая электродинамика

Электромагнитные волны не взаимодействуют сами с собой; каждая отдельная стоячая волна есть периодически колеблющаяся система - осциллятор. Поэтому задача квантования электромагнитного поля сводится к задаче квантования независимых осцилляторов.

ДОПОЛНИТЕЛЬНОСТИ ПРИНЦИП – один из важнейших методологических и эвристических принципов современной науки. Предложен Н.Бором (1927) при интерпретации квантовой механики: для полного описания квантово-механических объектов нужны два взаимоисключающих («дополнительных») класса понятий, каждый из которых применим в особых условиях, а их совокупность необходима для воспроизведения целостности этих объектов. Физический смысл принципа дополнительности заключается в том, что квантовая теория связана с признанием принципиальной ограниченности классических физических понятий применительно к атомным и субатомным явлениям. Однако, как указывал Бор, «интерпретация эмпирического материала в существенном покоится именно на применении классических понятий» (Бор Н. Избр. науч. труды, т. 2. М., 1970, с. 30). Это означает, что действие квантового постулата распространяется на процессы наблюдения (измерения) объектов микромира: «наблюдение атомных явлений включает такое взаимодействие последних со средствами наблюдения, которым нельзя пренебречь» (там же, с. 37), т.е., с одной стороны, это взаимодействие приводит к невозможности однозначного («классического») определения состояния наблюдаемой системы независимо от средств наблюдения, а с другой стороны, никакое иное наблюдение, исключающее воздействие средств наблюдения, по отношению к объектам микромира невозможно. В этом смысле принцип дополнительности тесно связан с физическим смыслом «соотношения неопределенностей» В.Гейзенберга: при определенности значений импульса и энергии микрообъекта не могут быть однозначно определены его пространственно-временные координаты, и наоборот; поэтому полное описание микрообъекта требует совместного (дополнительного) использования его кинематических (пространственно-временных) и динамических (энергетически-импульсных) характеристик, которое, однако, не должно пониматься как объединение в единой картине по типу аналогичных описаний в классической физике. Дополнительный способ описания иногда называют неклассическим употреблением классических понятий (И.С.Алексеев).

Принцип дополнительности применим к проблеме «корпускулярно-волнового дуализма», которая возникает при сопоставлении объяснений квантовых явлений, основанных на идеях волновой механики (Э.Шредингер) и матричной механики (В.Гейзенберг). Первый тип объяснения, использующий аппарат дифференциальных уравнений, является аналитическим; он подчеркивает непрерывность движений микрообъектов, описываемых в виде обобщений классических законов физики. Второй тип основан на алгебраическом подходе, для которого существен акцент на дискретности микрообъектов, понимаемых как частицы, несмотря на невозможность их описания в «классических» пространственно-временных терминах. Согласно принципу дополнительности, непрерывность и дискретность принимаются как равно адекватные характеристики реальности микромира, они несводимы к некой «третьей» физической характеристике, которая «связала» бы их в противоречивом единстве; сосуществование этих характеристик подходит под формулу «либо одно, либо другое», а выбор из них зависит от теоретических или экспериментальных проблем, возникающих перед исследователем (Дж.Холтон).

Бор полагал, что принцип дополнительности применим не только в физике, но имеет более широкую методологическую значимость. Ситуация, связанная с интерпретацией квантовой механики, «имеет далеко идущую аналогию с общими трудностями образования человеческих понятий, возникающими из разделения субъекта и объекта» (там же, с. 53). Такого рода аналогии Бор усматривал в психологии и, в частности, опирался на идеи У.Джеймса о специфике интроспективного наблюдения за непрерывным ходом мышления: подобное наблюдение воздействует на наблюдаемый процесс, изменяя его; поэтому для описания мыслительных феноменов, устанавливаемых интроспекцией, требуются взаимоисключающие классы понятий, что соответствует ситуации описания объектов микрофизики. Другая аналогия, на которую Бор указывал в биологии, связана с дополнительностью между физико-химической природой жизненных процессов и их функциональными аспектами, между детерминистическим и телеологическим подходами. Он обращал также внимание на применимость принципа дополнительности к пониманию взаимодействия культур и общественных укладов. В то же время Бор предупреждал против абсолютизации принципа дополнительности в качестве некоей метафизической догмы.

Тупиковыми можно считать такие интерпретации принципа дополнительности, когда он трактуется как гносеологический «образ» некоей «внутренне присущей» объектам микромира противоречивости, отображаемой в парадоксальных описаниях («диалектических противоречиях») типа «микрообъект является и волной, и частицей», «электрон обладает и не обладает волновыми свойствами» и т.п. Разработка методологического содержания принципа дополнительности – одно из наиболее перспективных направлений в философии и методологии науки. В его рамках рассматриваются применения принципа дополнительности в исследованиях соотношений между нормативными и дескриптивными моделями развития науки, между моральными нормами и нравственным самоопределением человеческой субъективности, между «критериальными» и «критико-рефлексивными» моделями научной рациональности.

Литература:

1. Гейзенберг В. Физика и философия. М., 1963;

2. Кузнецов Б.Г. Принцип дополнительности. М., 1968;

3. Методологические принципы физики. История и современность. М., 1975;

4. Холтон Дж. Тематический анализ науки. М., 1981;

5. Алексеев И.С. Деятельностная концепция познания и реальности. – Избр. труды по методологии и истории физики. М., 1995;

6. Исторические типы научной рациональности, т. 1–2. М., 1997.

Фундаментальным принципом квантовой механики наряду с соотношением неопределенностей является принцип дополнительности, которому Н. Бор дал следующую формулировку:

«Понятия частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего».

Противоречия корпускулярно-волновых свойств микрообъектов являются результатом неконтролируемого взаимодействия микрообъектов и макроприборов. Имеется два класса приборов: в одних квантовые объекты ведут себя как волны, в других - подобно частицам. В экспериментах мы наблюдаем не реальность как таковую, а лишь квантовое явление, включающее результат взаимодействия прибора с микрообъектом. М. Борн образно заметил, что волны и частицы - это «проекции» физической реальности на экспериментальную ситуацию.

Во-первых, идея корпускулярно-волнового дуализма означает, что любой материальный объект, обладающий корпускулярно-волновым дуализмом, имеет энергетическую оболочку. Подобная энергетическая оболочка существует и у Земли, а также у человека, которую чаще всего называют энергетическим коконом. Эта энергетическая оболочка может играть роль сенсорной оболочкой, экранирующей материальный объект от внешней среды и составляющей его внешнюю "гравитационную сферу". Эта сфера может играть роль мембраны в клетках живых организмов. Она пропускает внутрь только "отфильтрованные" сигналы, с уровнем возмущений, превышающий некоторое предельное значение. Аналогичные сигналы, превысившие некоторый определенный порог чувствительности оболочки, она может пропускать и в обратную сторону.

Во-вторых, наличие у материальных объектов энергетической оболочки, выводит на новый уровень осмысления гипотезу французского физика Л. де Бройля о действительно универсальной природе корпускулярно-волнового дуализма.

В-третьих, в силу эволюции строения материи, природа корпускулярно-волнового дуализма электрона может являться отражением корпускулярно-волнового дуализма фотонов. Это означает, что фотон, являясь нейтральной частицей, имеет мезонное строение и представляет собой самый элементарный микро атом, из которого, по образу и подобию строятся все материальные объекты Вселенной. Более того, это строительство осуществляется по одним и тем же правилам.

В-четвертых, корпускулярно-волновой дуализм позволяет естественным образом объяснить феномен генной памяти (Генная память) частиц, атомов, молекул, живых организмов, давая возможность осознания механизмов такой памяти, когда бесструктурная частица помнит обо всех своих порождениях в Прошлом и обладает "интеллектом" к избранным процессам синтеза, с целью формирования новых "частиц", с избранными свойствами.

Принцип неопределенности - физический закон, который утверждает, что нельзя одновременно точно измерить координаты и импульс микроскопического объекта, т.к. процесс измерения нарушает равновесие системы. Произведение этих двух неопределенностей всегда больше Постоянной Планка. Этот принцип был впервые сформулирован Вернером Гейзенбергом.

Из принципа неопределённости следует, что чем точнее определена одна из входящих в неравенство величин, тем менее определенно значение другой. Никакой эксперимент не может привести к одновременно точному измерению таких динамичных переменных; при этом неопределённость в измерениях связано не с несовершенством экспериментальной техники, а с объективными свойствами материи.

Принцип неопределённости, открытый в 1927 г. немецким физиком В. Гейзенбергом, явился важным этапом в выяснении закономерностей внутриатомных явлений и построении квантовой механики. Существенной чертой микроскопических объектов является их корпускулярно-волновая природа. Состояние частицы полностью определяется волновой функцией (величина, полностью описывающая состояние микрообъекта (электрона, протона, атома, молекулы) и вообще любой квантовой системы). Частица может быть обнаружена в любой точке пространства, в которой волновая функция отлична от нуля. Поэтому результаты экспериментов по определению, например, координаты имеют вероятностный характер.

Пример: движение электрона представляет собой распространение его собственной волны. Если стрелять пучком электронов через узкое отверстие в стенке: узкий пучок пройдёт через него. Но если сделать это отверстие ещё меньше, такое, чтобы его диаметр по величине сравнялся с длиной волны электрона, то пучок электронов разойдётся во все стороны. И это не отклонение, вызванное ближайшими атомами стенки, от которого можно избавиться: это происходит вследствие волновой природы электрона. Попробуйте предсказать, что произойдёт дальше с электроном, прошедшим за стенку, и вы окажетесь бессильными. Вам точно известно, в каком месте он пересекает стенку, но сказать, какой импульс в поперечном направлении он приобретёт, вы не можете. Наоборот, чтобы точно определить, что электрон появится с таким-то определённым импульсом в первоначальном направлении, нужно увеличить отверстие настолько, чтобы электронная волна проходила прямо, лишь слабо расходясь во все стороны из-за дифракции. Но тогда невозможно точно сказать, в каком же точно месте электрон-частица прошёл через стенку: отверстие-то широкое. Насколько выигрываешь в точности определения импульса, настолько проигрываешь в точности, с какой известно его положение.

Это и есть принцип неопределённости Гейзенберга. Он сыграл исключительно важную роль при построении математического аппарата для описания волн частиц в атомах. Его строгое толкование в опытах с электронами такого: подобно световым волнам электроны сопротивляются любым попыткам выполнить измерения с предельной точностью. Этот принцип меняет и картину атома Бора. Можно определить точно импульс электрона (а, следовательно, и его уровень энергии) на какой-нибудь его орбите, но при этом его местонахождение будет абсолютно неизвестно: ничего нельзя сказать о том, где он находится. Отсюда ясно, что рисовать себе чёткую орбиту электрона и помечать его на ней в виде кружка лишено какого-либо смысла. В конце XIX в. многие ученые считали, что развитие физики завершилось по следующим причинам:

· больше 200 лет существуют законы механики, теория всемирного тяготения

· разработана молекулярно-кинетическая теория

· подведен прочный фундамент под термодинамику

· завершена максвелловская теория электромагнетизма

· открыты фундаментальные законы сохранения (энергии, импульса момента импульса, массы и электрического заряда)

В конце XIX -- начале XX в. открыты В. Рентгеном -- X-лучи (рентгеновские лучи), А. Беккерелем -- явление радиоактивности, Дж. Томсоном --электрон. Однако классическая физика не сумела объяснить эти явления.

Теория относительности А. Эйнштейна потребовала коренного пересмотра понятии пространства и времени. Специальные опыты подтвердили справедливость гипотезы Дж. Максвелла об электромагнитной природе света. Можно было предположить, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но это предположение нужно было подтвердить сопоставлением теоретических и экспериментальных данных.

Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела, т. е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.

Примером абсолютно черного тела по излучающей способности может быть Солнце, по поглощающей - полость с зеркальными стенками с маленьким отверстием.

Австрийские физики И. Стефан и Л. Больцман экспериментально установили, что полная энергия Е, излучаемая за 1 с абсолютно черным телом с единицы поверхности, пропорциональна четвертой степени абсолютной температуры Т:

где s = 5,67.10-8 Дж/(м2.К-с) - постоянная Стефана-Больцмана.

Этот закон был назван законом Стефана -- Больцмана. Он позволил вычислить энергию излучения абсолютно черного тела по известной температуре.

Стремясь преодолеть затруднения классической теории при объяснении излучения черного тела, М. Планк в 1900 г. высказал гипотезу: атомы испускают электромагнитную энергию от дельными порциями --квантами. Энергия Е, где h=6,63.10-34 Дж.с--постоянная Планка.

Иногда удобно измерять энергию и постоянную Планка в электрон вольтах.

Тогда h=4,136.10-15 эВ.с. В атомной физике употребляется также величина

(1 эВ - энергия, которую приобретает элементарный заряд, проходя ускоряющую разность потенциалов 1 В. 1 эВ=1,6.10-19 Дж).

Таким образом, М. Планк указал путь выхода из трудностей, с которыми столкнулась теория теплового излучения, после чего начала развиваться современная физическая теория, называемая квантовой физикой.

Физика - главная из естественных наук, поскольку она открывает истины, о соотношении нескольких основных переменных, справедливые для всей вселенной. Её универсальность обратно пропорциональна количеству переменных, которые она вводит в свои формулы.

Прогресс физики (и науки в целом) связан с постепенным отказом от непосредственной наглядности. Как - будто такой вывод должен противоречить тому, что современная наука и физика, прежде всего, основывается на эксперименте, т.е. эмпирическом опыте, который проходит при контролируемых человеком условиях и может быть воспроизведён в любое время, любое число раз. Но всё дело в том, что некоторые стороны реальности незаметны для поверхностного наблюдения и наглядность может ввести в заблуждение.

Квантовая механика - это физическая теория, устанавливающая способ описания и законы движения на микроуровне.

Для классической механики характерно описание частиц путём задания их положения и скоростей, и зависимости этих величин от времени. В квантовой механике одинаковые частицы в одинаковых условиях могут вести себя по-разному.

Статистические законы можно применять только к большим совокупностям, но не к отдельным индивидуумам. Квантовая механика отказывается от поиска индивидуальных законов элементарных частиц и устанавливает статистические законы. На базе квантовой механики невозможно описать положение и скорость элементарной частицы или предсказать её будущий путь. Волны вероятности говорят нам о вероятности встретить электрон в том или ином месте.

Значение эксперимента возросло в квантовой механике до такой степени, что, как пишет Гейзенберг, «наблюдение играет решающую роль в атомном событии и что реальность различается в зависимости от того, наблюдаем мы её или нет».

Принципиальное отличие квантовой механики от классической состоит в том, что её предсказания всегда имеют вероятностный характер. Это означает, что мы не можем точно предсказать, в какое именно место попадает, например, электрон в рассмотренном выше эксперименте, какие бы совершенные средства наблюдения и измерения ни использовали. Можно оценить лишь его шансы попасть в определённое место, а, следовательно, применить для этого понятия и методы теории вероятностей, которая служит для анализа неопределённых ситуаций.

В квантовой механике любое состояние системы описывается с помощью так называемой матрицы плотности, но, в отличие от классической механики, эта матрица определяет параметры её будущего состояния не достоверно, а лишь с той или иной степенью вероятности. Важнейший философский вывод из квантовой механики заключается в принципиальной неопределённости результатов измерения и, следовательно, невозможности точного предвидения будущего.

Это в комбинации с принципом неопределённости Гейзенберга, а также другими теоретическими и экспериментальными данными заставило некоторых учёных предположить, что у микрочастиц вообще нет никаких внутренних свойств, и они появляются только в момент измерения. Другие же предположили, что роль сознания экспериментатора для существования всей Вселенной является ключевой, поскольку, согласно квантовой теории, именно наблюдение создаёт или частично создаёт наблюдаемое.Детерминизм - учение о первоначальной определимости всех происходящих в мире процессов, включая все процессы человеческой жизни, со стороны Бога (теологический детерминизм, или учение о предопределении), или только явлений природы (космологический детерминизм), или специально человеческой воли (антропологическо-этический детерминизм), для свободы которой, как и для ответственности, не оставалось бы тогда места.

Под определимостью здесь подразумевается философское утверждение, что каждое произошедшее событие, включая и человеческие поступки, и поведение, однозначно определяется множеством причин, непосредственно предшествующих данному событию.

В таком свете детерминизм может быть также определен как тезис, утверждающий, что имеется только одно, точно заданное, возможное будущее.

Индетерминизм - философское учение и методологическая позиция, которые отрицают, либо объективность причинной связи, либо познавательную ценность причинного объяснения в науке.

В истории философии, начиная с древнегреческой философии (Сократ) вплоть до настоящего времени, индетерминизм и детерминизм выступают как противостоящие концепции по проблемам обусловленности воли человека, его выбора, проблеме ответственности человека за совершённые поступки.

Индетерминизм трактует волю как автономную силу, утверждая, что принципы причинности не применимы к объяснению человеческого выбора и поведения.

Термин детерминации ввел в оборот философ-эллинист Демокрит в своей атомистической концепции, которая отрицала случайность, принимая ее просто за непознанную необходимость. С латинского языка термин детерминация переводится как определение, обязательная определимость всех вещей и явлений в мире другими вещами и явлениями. Сначала детерминировать означало определять предмет через выявление и фиксацию его признаков, отделяющих этот предмет от других. Причинность приравнивалась к необходимости, случайность же исключалась из рассмотрения, считалась просто несуществующей. Такое понимание детерминации подразумевало наличие познающего субъекта.

С возникновением христианства, детерминизм выражается в двух новых понятиях - божественного предопределения и божественной благодати, и с этим новым, христианским детерминизмом сталкивается прежний принцип свободы воли. Для общего церковного сознания христианства изначально было одинаково важно сохранить в неприкосновенности оба утверждения: что все без изъятия зависит от Бога и что ничто не зависит от человека. В V веке, на Западе, в своих учениях Пелагий поднимает вопрос христианского детерминизма в аспекте свободы воли. Против пелагианского индивидуализма выступил блаженный Августин. В своих полемических сочинениях, во имя требований христианской универсальности, он нередко доводил до ошибочных крайностей детерминизма, несовместимых с нравственной свободой. Августин развивает мысль о том, что спасение человека зависит всецело и исключительно от благодати Божией, которая сообщается и действует не по собственным заслугам человека, а даром, по свободному избранию и предопределению со стороны Божества.

Дальнейшее развитие и обоснование детерминизм получает в естествознании и материалистической философии нового времени (Ф. Бэкон, Галилей, Декарт, Ньютон, Ломоносов, Лаплас, Спиноза, фр. материалисты XVIII в.). В соответствии с уровнем развития естествознания, детерминизм этого периода носит механистический, абстрактный характер.

Опираясь на труды своих предшественников и на основополагающие идеи естествознания И. Ньютона и К. Линнея, Лаплас, в своей работе «Опыт философии теории вероятностей» (1814) довел идеи механистического детерминизма до логического конца: он исходит из постулата, согласно которому из знания начальных причин можно всегда однозначно вывести следствия.

Методологический принцип детерминизма является одновременно и основополагающим принципом философского учения о бытии. Одной из фундаментальных онтологических идей, положенных в основу классического естествознания его создателями (Г. Галилей, И. Ньютон, И. Кеплер и др.), явилась концепция детерминизма. Эта концепция заключалась в принятии трех базовых утверждений:

1) природа функционирует и развивается в соответствии с имманентно присущими ей внутренними, «естественными» законами;

2) законы природы есть выражение необходимых (однозначных) связей между явлениями и процессами объективного мира;

3) цель науки, соответствующая ее предназначению и возможностям, - открытие, формулирование и обоснование законов природы.

Среди многообразных форм детерминации, отражающих универсальную взаимосвязь и взаимодействие явлений в окружающем мире, особенно выделяется причинно-следственная, или каузальная (от лат. causa - причина) связь, знание которой ничем не заменимо для правильной ориентировки в практической и научной деятельности. Поэтому именно причина выступает важнейшим элементом системы детерминирующих факторов. И все же принцип детерминизма шире принципа каузальности: кроме причинно-следственных связей он включает в себя и другие виды детерминации (функциональные связи, связь состояний, целевую детерминацию и т.д.).

Детерминизм в своем историческом развитии прошел два основных этапа - классического (механистического) и пост классического (диалектического) по своей сущности.

В учении Эпикура о самопроизвольном отклонении атома от прямой линии содержалось современное понимание детерминизма, но поскольку сама случайность у Эпикура ничем не определяется (беспричинна), то без особых погрешностей можно сказать, что от Эпикура берет свое начало индетерминизм.

Индетерминизм - учение о том, что имеются состояния и события, для которых причина не существует или не может быть указана.

В истории философии известны два вида индетерминизма:

· Так называемый «объективный» индетерминизм, начисто отрицающий причинность как таковую, не только ее объективную данность, но и возможность ее субъективистского истолкования.

· Идеалистический индетерминизм, который, отрицая объективный характер отношений детерминации, объявляет причинность, необходимость, закономерность продуктами субъективности, а не атрибутами самого мира.

Это значит (у Юма, Канта и многих других философов), что причина и следствие, подобно иным категориям детерминации, суть лишь априорные, т.е. полученные не из практики, формы нашего мышления. Многие субъективные идеалисты объявляют употребление этих категорий «психологической привычкой» человека наблюдать одно явление следующим за другим и объявлять первое явление причиной, а второе следствием.

Стимулом для оживления индетерминистических воззрений в начале XX века послужил факт возрастания в физике роли статистических закономерностей, наличие которых было объявлено опровергающим причинность. Однако диалектико-материалистическая трактовка соотношения случайности и необходимости, категорий причинности и закона, развитие квантовой механики, раскрывшей новые виды объективной причинной связи явлений в микромире, показали несостоятельность попыток использовать наличие вероятностных процессов в фундаменте микромира для отрицания детерминизма.

Исторически концепцию детерминизма связывают с именем П. Лапласа, хотя уже у его предшественников, например, Демокрита и Спинозы, наблюдалась тенденция отождествления «закона природы», «причинности» с «необходимостью», рассмотрения «случайности» как субъективного результата незнания «подлинных» причин.

Классическая физика (в частности механика Ньютона) выработала специфическое представление о научном законе. Принималось как очевидное, что для любого научного закона должно обязательно выполняться следующее требование: если известны начальное состояние физической системы (например, ее координаты и импульс в ньютоновской механике) и взаимодействие, задающее динамику, то в соответствии с научным законом можно и должно вычислить ее состояние в любой момент времени как в будущем, так и в прошлом.

Причинно-следственная связь явлений выражается в том, что одно явление (причина) при определенных условиях обязательно вызывает к жизни другое явление (следствие). Соответственно можно дать и рабочие определения причины и следствия. Причина есть явление, действие которого вызывает к жизни, определяет последующее развитие другого явления. Тогда следствие есть результат действия определенной причины.

В детерминацию явлений, в систему их определенности наряду с причиной входят и условия -- те факторы, без наличия которых причина не может породить следствие. Это означает, что причина сама по себе срабатывает не во всяких условиях, а только в определенных.

В систему детерминации явлений (в особенности общественных) зачастую входит повод -- тот или иной фактор, обуславливающий лишь момент, время возникновения следствия.

Существуют три типа временной направленности причинно-следственных связей:

1) детерминация прошлым. Такая детерминация по существу является всеобщей, ибо отражает объективную закономерность, согласно которой причина в конечном счете всегда предшествует следствию. Эту закономерность очень тонко подметил Лейбниц, давший следующее определение причины: "Причина есть то, что заставляет какую-нибудь вещь начать существовать";

2) детерминация настоящим. Познавая природу, общество, собственное мышление, мы неизменно обнаруживаем, что многие вещи, будучи детерминированными прошлым, находятся и в детерминирующем взаимодействии с вещами, сосуществующими одновременно с ними. Не случайно представление об одновременной детерминирующей связи мы встречаем в разных областях знания -- физике, химии (при анализе равновесных процессов), в биологии (при рассмотрении гомеостазиса) и т.д.

Детерминированность настоящим имеет прямое отношение и к тем парным категориям диалектики, между которыми существует причинно-следственная связь. Как известно, форма любого явления находится под определяющим воздействием содержания, но это отнюдь не означает, что содержание предшествует форме вообще и в своей первоначальной точке может быть бесформенно;

3) детерминация будущим. Такая детерминация, как подчеркивается в ряде исследований, хотя и занимает более ограниченное по сравнению с рассмотренными выше типами место среди детерминирующих факторов, вместе с тем играет заметную роль. К тому же надо учитывать всю относительность термина "детерминация будущим": будущие события еще отсутствуют, об их реальности можно говорить только в том смысле, что они с необходимостью наличествуют в качестве тенденций в настоящем (и наличествовали в прошлом). И все же роль этого вида детерминации весьма существенна. Обратимся к двум примерам, связанным с сюжетами, о которых уже шла речь,

Детерминация будущим лежит в основе объяснения открытого академиком П.К. Анохиным опережающего отражения действительности живыми организмами. Смысл такого опережения, как подчеркивалось в главе, посвященной сознанию, в способности живого реагировать не только на предметы, кото­рые сейчас непосредственно воздействуют на него, но и на изменения, вроде бы безразличные для него в данный момент, но в действительности, являющиеся сигналами о вероятных будущих воздействиях. Причина здесь как бы действует из будущего.

Беспричинных явлений не существует. Но это не означает, что все связи между явлениями в окружающем мире относятся к причинно-следственным.

Философский детерминизм, как учение о материальной регулярной обусловленности явлений, не исключает существования непричинных видов обусловливания. Непричинные отношения между явлениями можно определить, как такие отношения, в которых наблюдается взаимосвязь, взаимозависимость, взаимообусловленность между ними, но отсутствует непосредственное отношение генетической производительности и временной асимметрии.

Наиболее характерным примером непричинного обусловливания или детерминации является функциональная связь между отдельными свойствами или характеристиками предмета.

Связи между причинами и следствиями могут носить не только необходимый, жестко обусловленный, но и случайный, вероятностный характер. Познание вероятностных причинно-следственных связей потребовало включения в причинный анализ новых диалектических категорий: случайность и необходимость, возможность и действительность, закономерность и др.

Случайность -- понятие, полярное необходимости. Случайной называют такую связь причины и следствия, при которой причинные основания допускают реализацию любого из множества возможных альтернативных следствий. При этом то, какой именно вариант связи осуществится, зависит от стечения обстоятельств, от не поддающихся точному учету и анализу условий. Таким образом, случайное событие наступает как результат воздействия некоторых из неопределенно большого числа разнообразных и в точности неизвестных причин. Наступление случайного события-следствия в принципе возможно, однако не предопределено: оно может произойти, а может и не произойти.

В истории философии широко представлена точка зрения, согласно которой случайного реально нет, оно следствие неизвестных наблюдателю необходимых причин. Но, как впервые показал Гегель, случайное событие в принципе не может быть вызвано одними только внутренними, необходимо тому или иному процессу присущими закономерностями. Случайное событие, как писал Гегель, не может быть объяснено из самого себя.

Непредсказуемость случайностей кажется противоречащей принципу причинности. Но это не так, потому что случайные события и причинные связи -- следствия хотя и неизвестных заранее и досконально, но все же реально существующих и достаточно определенных условий и причин. Возникают они не хаотично и не из «ничего»: возможность их появления хотя и не жестко, не однозначно, но закономерно связана с причинными основаниями. Эти связи и законы обнаруживаются в результате изучения большого числа (потока) однородных случайных событий, описываемого с помощью аппарата математической статистики, и потому называются статистическими. Статистические закономерности имеют объективный характер, но существенно отличаются от закономерностей единичных явлений. Применение количественных методов анализа и исчисления характеристик, подчиняющихся статистическим законам случайных явлений и процессов, сделало их предметом особого раздела математики -- теории вероятностей.

Вероятность -- мера возможности наступления случайного события. Вероятность невозможного события равна нулю, вероятность наступления необходимого (достоверного) события -- единице.

Вероятностно-статистическая интерпретация сложных причинно-следственных отношений позволила разработать и применить в научных исследованиях принципиально новые и весьма эффективные методы познания структуры и законов развития мира. Современные успехи квантовой механики и химии, генетики были бы невозможны без понимания неоднозначности отношений между причинами и следствиями изучаемых явлений, без признания того, что последующие состояния развивающегося предмета далеко не всегда можно полностью вывести из предыдущего.

Принцип дополнительности, сформулированный Н. Бором в 1927 году, является одной из самых глубоких философских и естественнонаучных идей нашего времени. С этой идеей можно сравнить лишь такие идеи, как принцип относительности или представления о физическом поле.

Толчком к созданию Бором его принципа дополнительности оказались результаты Гейзенберга - его знаменитое "соотношение неопределенностей". Бор обратил внимание на тот факт, что координату и импульс частицы нельзя измерить не только одновременно, но и с помощью одного прибора. Эти измерения должны выполняться с использованием приборов, существенно различаются; несовместимость этих приборов естественно обусловлено противоречивостью свойств исследуемых с их помощью. Эти свойства действительно несовместимы, но все равно необходимы для полного описания объекта. Дополнительность - так определил Бор эти свойства.

Действительно, поток света мы исследуем с двух позиций. Во-первых, с помощью различных специальных методов исследуются спектральные характеристики света - которые длины волн у излучении, а, во-вторых, - его энергетические характеристики, поскольку определяется распределение энергии в спектре. В первом случае изучаются волновые свойства света, а во втором - корпускулярные, так как энергию переносят фотоны. Эти характеристики изучаются с помощью принципиально различных приборов; они являются взаимодополняющими, так как волновые и корпускулярные показатели одинаковой степени необходимы для полного описания такого явления, как свет.

В переводе на язык абстрактных понятий приведенное рассуждение можно обобщить следующим образом. Квантовый объект - это "вещь в себе", пока мы не определили способа его наблюдения. Различные свойства требуют использования различных способов, иногда несовместимых между собой. Фактически возникает "экспериментальная ситуация", действующими лицами которой выступают взаимосвязанные "объект" и "наблюдение"; друг без друга они не имеют смысла. Результат реализации экспериментальной ситуации (явление) отражает влияние прибора на исследуемый объект. Выбирая различные приборы, мы меняем экспериментальную ситуацию и изучаем разные явления. И хотя дополнительные явления нельзя изучить одновременно, в одном опыте, они одинаково необходимы для полного описания объекта исследования.

Корпускулярно-волновой дуализм вызывает у неопытного человека вполне естественное сопротивление - понятие "частица" и "волна" нам трудно объединить в сознании. Эту причину несовместимости в нашем сознании дополнительных понятий, однако, можно объяснить. Чтобы объяснить результаты исследования микромира, мы вынуждены прибегать к наглядных образов, которые возникли еще в донаучные времена, и эти образы не совсем пригодными для наших целей. Среди основных положений формальной логики - «правило исключенного третьего": из двух противоположных высказываний одно является истинным, другое - ложным, а третьего не дано. В классической физике не было случая, который бы вызвал сомнение в этом правиле, поскольку понятие "частица" и "волна" действительно противоположные и несовместимые. Но оказалось, что в квантовой физике они одинаково хорошо применимы для описания свойств тех же объектов, и использовать их надо одновременно. Бор объяснил, что нельзя безоговорочно применять классические понятия для описания квантовых явлений. В квантовой физике меняются не только понятия, но и постановка вопросов о сущности физических явлений. Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности Эйнштейна.

На идеально поставленный вопрос можно ответить коротко: "да" или "нет". Бор доказал, что вопрос "волна или частица" применительно к атомной объекта поставлена неправильно, таких раздельных свойств атом не имеет, и поэтому на этот вопрос нельзя дать однозначный ответ "да" или "нет". Квантовый объект - это не частица и не волна, и ни то, ни другое одновременно. Квантовый объект - это нечто третье, такое, что не равна сумме свойств волны и частицы, подобно тому, как русалка - это не сумма женщины и рыбы. У нас нет органов чувств и образов, чтобы представить себе свойства этой атомной реальности. Две дополнительные свойства квантового объекта нельзя разделить, не разрушив при этом полноту и единство природы.

Гейзенберг отверг идеализацию классической физики - понятие "состояние физической системы, независимый от наблюдения". Этим он предсказал один из последствий принципа дополнительности, поскольку "состояние" и "наблюдения" - дополнительные понятия. Взятые порознь - они неполные, и поэтому могут быть определены только совместно, одно через другое. Более строго, они вообще не существуют порознь: мы всегда наблюдаем не вообще что-то, а непременно какое-то состояние. Г наоборот: всякий состояние - это вещь в себе до тех пор, пока мы не найдем способ его наблюдения.

Понятие "волна" и "частица", "состояние" и "наблюдения" - это идеализации, необходимые для понимания квантового мира. Классические картины е дополнительными в том смысле, что для полного описания сущности квантовых явлений необходимо их гармоническое сочетание. Однако в рамках привычной логики они могут существовать независимо, если области их применимости взаимно ограничены.

Эти и другие подобные примеры, как показал Бор, являются отдельными проявлениями общего правила * любое истинно глубокое явление природы нельзя определить однозначно с помощью слов нашего языка; оно требует для своего определения по крайней мере двух взаимоисключающих дополнительных понятий. Это означает, что при условии сохранения нашего языка и привычной логики мышления в форме дополнительности устанавливает пределы для точной формулировки понятий, соответствующих истинно глубоким явлениям природы. Такие определения или однозначные, но неполные или полные, но тогда неоднозначны, поскольку включают в себя дополнительные понятия, несовместимые в пределах обычной логики. Среди таких понятий - понятие "жизнь", "квантовый объект", "физическая система" и даже само понятие "Познание природы".

Бор проводил огромную и напряженную работу, исследуя применение понятия дополнительности и в других, кроме физики, областях знания. Эту задачу он считал не менее существенной, чем чисто физические исследования.

Или сводятся биологические закономерности к физико-химических процессов? На первый взгляд, все биологические процессы определяются движением частиц, из которых состоит живая материя. Предельное выражение такой точки зрения - определение физиологии как "физической химии азотсодержащих коллоидов". Но такой взгляд отражает только одну сторону дела. Другая сторона, более важная - закономерности живой материи, хотя и определяются законами физики и химии, но не сводятся к ним. Для биологических процессов характерна финалистична закономерность, которая отвечает на вопрос "зачем?". Физику же интересуют только вопросы "почему?" и как?". Виталисты считают существенной только биологическую закономерность, отрицая физико-химический аспект биологических процессов.

Правильное понимание биологии возможно только на основе дополнительности физико-химической причинности и биологической целеустремленности. Понятие дополнительности позволяет осуществлять описание живых процессов на основе взаимодополняющих подходов.

В статье "Свет и жизнь" Бор замечает, что "непрерывный обмен веществ между организмом и окружающей средой необходим для поддержания жизни, в результате чего четкое выделение организма как физико-химической системы представляется невозможным. Поэтому можно считать, что любая попытка провести резкую грань, что позволяет осуществить исчерпывающий физико-химический анализ, вы зовет такие изменения в обмене веществ, которые несовместимы с жизнью организма... ".

Действительно, пытаясь изучить детали механизма жизнедеятельности клетки, мы подвергаем ее различным, порой губительным воздействиям - нагреванию, пропусканию электрического тока, исследованию в электронном микроскопе и т.д. В конце концов мы разрушим клетку и поэтому ничего не узнаем о ней как о целостном живой организм. Однако ответ на вопрос "Что такое жизнь?" требует и анализа, и синтеза одновременно. Процессы эти несовместимы, но не противоречивы, а дополнительные, и необходимость принимать их во внимание одновременно - лишь одна из причин, по которым до сих пор не существует ответа на вопрос о сущности жизни.

Бор много размышлял над применением понятия дополнительности в психологии. Он говорил: "Мы все знаем старое высказывание о том, что, пытаясь анализировать наши переживания, мы перестаем их испытывать. В этом смысле слова мы обнаруживаем, что между психологическими опытами, для описания которых целесообразно употреблять слова" мысли "и" чувства ", существует соотношение дополнительности, подобное тому, которое существует между данными о поведении атомов ".

Физическая картина явления и его математическое описание являются дополнительными. Создание физической картины требует пренебрежения деталями и не ведет к математической точности. И наоборот, попытка точного математического описания явления затрудняет его понимание.

Наука - это только один из способов изучения окружающего мира; другой, дополнительный способ, воплощенный в искусстве. Совместное существование искусства и науки - одна из иллюстраций принципа дополнительности. Стержень науки - логика и опыт; основа искусства - интуиция и прозрения. Они не противоречат, а дополняют друг друга: настоящая наука подобна искусства - точно так же, как настоящее искусство всегда включает в себя элементы науки. В высших своих проявлениях они неразличимы и неразделимы, как свойства "волна-частица" в атоме. Они отражают различные дополнительные стороны человеческого опыта и лишь взятые вместе дают нам полное представление о мире. Мы только не знаем, к сожалению, "соотношение неопределенностей" для сопряженной пары понятий «наука-искусство", а потому и степень убыточности при одностороннем восприятии жизни.

Эта аналогия, как и любая аналогия, и неполна, и нестрогая. Она только помогает почувствовать единство и противоречивость всей системы человеческих знаний.

На вопрос "Что является дополнительным к понятию истины?" Бор ответил: "Ясность".

Вадим Руднев

Принцип дополнительности - методологический принцип, сформулированный Нильсом Бором применительно к квантовой физике, согласно которому, для того чтобы наиболее адекватно описать физический объект, относящийся к микромиру, его нужно описывать во взаимоисключающих, дополнительных системах описания, например одновременно и как волну, и как частицу (ср. многозначные логики).

Вот как интерпретирует культурологическую значимость П. д. для ХХ в. русский лингвист и семиотик В. В. Налимов:

"Классическая логика оказывается недостаточной для описания внешнего мира. Пытаясь осмыслить это философски, Бор сформулировал свой знаменитый принцип дополнительности (здесь и далее в цитатах курсив и разрядка авторские - В.Р), согласно которому для воспроизведения в знаковой системе целостного явления необходимы взаимоисключающие, дополнительные классы понятий.

Это требование эквивалентно расширению логической структуры языка физики. Бор использует, казалось бы, очень простое средство: признается допустимым взаимоисключающее употребление двух языков, каждый из которых базируется на обычной логике. Они описывают исключающие друг друга физические явления, например непрерывность и атомизм световых явлений. (...) Бор сам хорошо понимал методологическое значение сформулированного им принципа: "...целостность живых организмов и характеристика людей, обладающих сознанием, а также человеческих культур представляют черты целостности, отображение которых требует типично дополнительного способа описания". (...) Принцип дополнительности - это, собственно, признание того, что четко построенные логические системы действуют как метафоры: они задают модели, которые ведут себя и как внешний мир, и не так. Одной логической конструкции оказывается недостаточно для описания всей сложности микромира. Требование нарушить общепринятую логику при описании картины мира (см. - В. Р.) со всей очевидностью впервые появилось в квантовой механике - и в этом ее особое философское значение".

Позднее Ю. М. Лотман применил расширенное понимание П. д. к описанию семиотики культуры. Вот что он пишет:

"...механизм культуры может быть описан в следующем виде: недостаточность информации, находящейся в распоряжении мыслящей индивидуальности, делает необходимым для нее обращение к другой такой же единице. Если бы мы могли представить себе существо, действующее в условии п о л н о й информации, то естественно было бы предположить, что оно не нуждается в себе подобном для принятия решений. Нормальной для человека ситуацией является деятельность в условиях недостаточной информации. Сколь ни распространяли бы мы круг наших сведений, потребность в информации будет развиваться, обгоняя темп нашего научного прогресса. Следовательно, по мере роста знания незнание будет не уменьшаться, а возрастать, а деятельность, делаясь более эффективной, - не облегчаться, а затрудняться. В этих условиях недостаток информации компенсируется ее стереоскопичностью - возможностью получить совершенно иную проекцию той же реальности - (см. - В.Р.) перевод ее на совершенно другой язык. Польза партнера по коммуникации заключается в том, что он д р у г о й.

П. д. обусловлен и чисто физиологически - функциональной асимметрией полушарий головного мозга - это своего рода естественный механизм для осуществления П. д.

В определенном смысле Бор сформулировал П. д. благодаря тому, что Куртом Геделем была доказана так называемая теорема о неполноте дедуктивных систем (1931). В соответствии с выводом Геделя - система либо непротиворечива, либо неполна.

Вот что пишет по этому поводу В. В. Налимов:

"Из результатов Геделя следует, что обычно используемые непротиворечивые логические системы, на языке которых выражается арифметика, неполны. Существуют истинные утверждения, выразимые на языке этих систем, которые в таких системах доказать нельзя. (...) Из этих результатов следует также, что никакое строго фиксированное расширение аксиом этой системы не может сделать ее полной, - всегда найдутся новые истины, не выразимые ее средствами, но невыводимые из нее. (...)

Общий вывод из теоремы Геделя - вывод, имеющий громадное философское значение: мышление человека богаче его дедуктивных форм.

Другим физическим, но также имеющим философский смысл положением, непосредственно касающимся П. д., является сформулированное великим немецким физиком ХХ в. Вернером Гейзенбергом так называемое соотношение неопределенностей. Согласно этому положению невозможно равным образом точно описать два взаимозависимых объекта микромира, например координату и импульс частицы. Если мы имеем точность в одном измерении, то она будет потеряна в другом.

Философский аналог этого принципа был сформулирован в последнем трактате Людвига Витгенштейна (см. аналитическая философия, достоверность) "О достоверности". Для того чтобы сомневаться в чем-бы то ни было, нечто должно оставаться несомненным. Мы назвали этот принцип Витгенштейна "принципом дверных петель".

Витгенштейн писал:

"В о п р о с ы, которые мы ставим, и наши с о м н е н и я основываются на том, что определенные предложения освобождены от сомнения, что они словно петли, на которых вращаются эти вопросы и сомнения. (...) То есть это принадлежит логике наших научных исследований, что определенные вещи и в с а м о м д е л е несомненны. (...) Если я хочу, чтобы дверь вращалась, петли должны быть неподвижны".

Таким образом, П. д. имеет фундаментальное значение в методологии культуры ХХ в., обосновывая релятивизм познания, что в культурной практике закономерно привело к появлению феномена постмодернизма, который идею стереоскопичности, дополнительности художественных языков возвел в главный эстетический принцип.

Список литературы

Бор Н. Атомная физика и человеческое познание - М., 1960

Гейзенберг В. Шаги за горизонт. - М., 1987.

Налимов В. В. Вероятностная модель языка. - М., 1979.

Лотман Ю. М. Феномен культуры // Лотман Ю. М. Избр. статьи в 3 тт. - Таллинн, 1992. - Т. 1.

Витгенштейн Л. О достоверности / Пер. А. Ф. Грязнова // Вопр. философии, 1984. - М 4.

Руднев В. Текст и реальность: Направление времени в культуре // Wiener slawisticher Almanach, 1987. - В. 17.

Руднев В. О недостоверности // Логос, 1997. - Вып. 9.