ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Известные люди которые занимались самообразованием. Ученые самоучки


Русский изобретатель-самоучка, создавший двухцилиндровую паровую машину. Далеко не у каждого научного открытия счастливая судьба: одни сразу же находят практическое применение, другие дожидаются своей очереди годами и даже целыми столетиями. Так случилось и с паросиловой машиной Ивана Ползунова: современники не оценили по достоинству ее значение.


Талантливый изобретатель, самородок из российской глубинки, Иван Иванович родился в семье солдата, и по окончании в 1742 году арифметической школы, основанной Василием Никитичем Татищевым, был определен «механическим» учеником к мастеру Никите Бахореву на один из уральских заводов. Когда горнозаводскому специалисту Ивану Ползунову исполнилось 20 лет, его перевели на Колывано-Воскресенские заводы Алтая, где добывались драгоценные металлы для царской казны: получив должность гиттеншрейбера, Иван Ползунов занимался подготовкой отчетов о ходе производства. Его конструкторская деятельность, по мнению историков-биографов, началась в 1754 году, когда для нужд завода Иван Иванович строил «вододействующую лесопилку». Любознательный, усердный, жадный до знаний, он самостоятельно изучал книги по металлургии и минералогии. Став одним из самых технически грамотных работников завода, он заботился о том, чтобы облегчить труд людей: предлагал множество остроумных новшеств в работе, однако проекты его пылились в архиве.


Существом почти равным Богу был для Ползунова Михаил Васильевич Ломоносов: Иван Иванович досконально изучил все труды великого ученого в области химии, физики, добычи и плавки руд. Ознакомился он также с работами известного российского химика Ивана Андреевича Шлаттера, в чьей книге «Обстоятельные наставления рудному делу» описывались английские и венгерские паровые машины, которые играли большую роль в промышленности этих европейских стран. В то время горнозаводские производственные процессы в России находились в полной зависимости от водяного колеса основного источника энергии: из оборудования были только воздуходувные мехи и молоты для ковки металла, приводимые в движение силой воды. Иван Ползунов задался целью «водяное руководство пресечь», и в апреле 1763 года представил начальнику завода Андрею Ивановичу Порошину проект «огненной машины».


От заграничных аналогов паровой двигатель Ползунова отличался, прежде всего, наличием двух цилиндров, вместо одного: такая усовершенствованная машина могла подавать «дутье» в печи и откачивать воду, в дальнейшем изобретатель планировал приспособить ее и для других нужд. Примечательны были слова современника Ивана Ивановича, ботаника и минералога Эрика Лаксмана: О проекте, представленном в царский Кабинет, доложили Екатерине II. Своим распоряжением она произвела Ивана Ползунова в «механикуса с чином и званием инженерного капитан-поручика», постановила выдать ему награду «в четыреста рублев» и, по возможности, направить на учебу в Академию наук. В 1764 году по разрешению Канцелярии Иван Ползунов приступил к строительству машины в 15 раз более мощной по сравнению с проектом: она одновременно должна была обслуживать дутьем 1012 печей.


За фантастически короткие сроки, 13 месяцев, Иван Ползунов собрал агрегат в так называемой «машинной хоромине» высотой в 18,5 метра, при этом некоторые детали двигателя весили до 2720 килограмм. Но для того, чтобы воплотить свою задумку Ивану Ползунову понадобилось изготовить еще и различные сопутствующие инструменты, в числе которых был токарный станок для обработки металла на «водяном ходу»... Такая грандиозная работа потребовала от изобретателя максимальной концентрации душевных и физических сил и ослабила его здоровье. Заболев чахоткой, Иван Иванович Ползунов не дожил до пробного запуска своего детища всего неделю.


7 августа машина подала первое дутье и работала с небольшими перерывами до ноября, за это время успела не только окупить все расходы на постройку, но и дать огромную прибыль. Когда у паровой машины прогорел котел, было решено, что «пущать ее в действо по изобилию в здешнем заводе воды, за нужно не признавается». Сломанный агрегат был разобран на части, а имя Ивана Ивановича Ползунова надолго забыто в алтайских краях. Опередивший свой век талантливый механик-самоучка «воскрес» только в памяти своих потомков, высоко оценивших его изобретательский дар. «Иван Ползунов муж, делающий истинную честь своему народу. Он строит теперь огненную машину, однако совсем отличную от тех, которые обычны в Англии и Венгрии. Эта машина должна приводить в действие без воды мехи при плавильных печах, которые обыкновенно приводятся в действие водой. Какое преимущество! В России смогут искусно строить плавильные печи на высоких горах и даже в шахтах».

У большинства из них нет не только высшего образования, но даже среднего. Примечательно, что это не помешало совершать удивительные открытия и становиться основоположниками совершенно новых научных дисциплин.

Константин Эдуардович Циолковский

Русский и советский учёный-самоучка и изобретатель, школьный учитель. Основоположник теоретической космонавтики. Обосновал использование ракет для полётов в космос, пришёл к выводу о необходимости использования «ракетных поездов» - прототипов многоступенчатых ракет. Основные научные труды относятся к аэронавтике, ракетодинамике и космонавтике.
В училище, по неизвестным причинам, Константин так и не поступил, но решил продолжить образование самостоятельно. Живя буквально в Москве на хлебе и воде (отец присылал 10-15 рублей в месяц), принялся упорно заниматься. «Кроме воды и чёрного хлеба у меня тогда ничего не было. Каждые три дня я ходил в булочную и покупал там на 9 копеек хлеба. Таким образом, я проживал в месяц 90 копеек.» Для экономии средств Константин передвигался по Москве только пешком. Все свободные деньги тратил на книги, приборы и химические препараты.
Ежедневно с десяти утра и до трёх-четырёх часов дня юноша штудирует науки в Чертковской публичной библиотеке - единственной бесплатной библиотеке в Москве того времени.
Работа в библиотеке была подчинена чёткому распорядку. С утра Константин занимался точными и естественными науками, требовавшими сосредоточенности и ясности ума. Затем переключался на более простой материал: беллетристику и публицистику. Активно изучал «толстые» журналы, где публиковались как обзорные научные статьи, так и публицистические.
За три года Константин полностью освоил гимназическую программу, а также значительную часть университетской.

Сриниваса Рамануджан Айенгор

Не имея специального математического образования, получил замечательные результаты в области теории чисел. Наиболее значительна его работа совместно с Годфри Харди по асимптотике числа разбиений p(n).
В школе проявились его незаурядные способности к математике, и знакомый студент из города Мадраса дал ему книги по тригонометрии. В 14 лет Рамануджан открыл формулу Эйлера о синусе и косинусе и был очень расстроен, узнав, что она уже опубликована. В 16 лет в его руки попало двухтомное сочинение математика Джорджа Шубриджа Карра «Сборник элементарных результатов чистой и прикладной математики», написанное почти за четверть века до этого (впоследствии, благодаря связи с именем Рамануджана, эта книга была подвергнута тщательному анализу). В нём было помещено 6165 теорем и формул, практически без доказательств и пояснений. Юноша, не имевший ни доступа в вуз, ни общения с математиками, погрузился в общение с этим сводом формул.
В 1913 году известный профессор Кембриджского университета Годфри Харди получил письмо от Рамануджана, в котором Рамануджан сообщал, что он не заканчивал университета, а после средней школы занимается математикой самостоятельно. К письму были приложены формулы, автор просил их опубликовать, если они интересны, поскольку сам он беден и не имеет для публикации достаточных средств. Между кембриджским профессором и индийским клерком завязалась оживленная переписка, в результате которой у Харди накопилось около 120 формул, неизвестных науке. По настоянию Харди в 27-летнем возрасте Рамануджан переехал в Кембридж. Там он был избран в члены Английского Королевского общества (Английская академия наук) и одновременно профессором Кембриджского университета. Он был первым индийцем, удостоенным таких почестей.

Милтон Хьюмасон

Родился в штате Миннесота, в семье крупного банкира. В 14 лет бросил школу и с 1917 начал работать в обсерватории Маунт Вильсон - вначале разнорабочим, потом ночным ассистентом. Несмотря на отсутствие у него специального образования в тот момент, проявил незаурядные способности наблюдателя, и по распоряжению Д. Э. Хейла вскоре был зачислен в штат научных работников. Работал в обсерватории Маунт-Вильсон до своей отставки в 1957.
Основные труды в области спектральных характеристик звёзд и галактик. В начальный период своей деятельности совместно с У. С. Адамсом и А. X. Джоем участвовал в программе определения спектральных абсолютных величин 4179 звёзд; получил большое число снимков туманностей и звёздных областей. В 1928 успешно продолжил начатые в обсерватории Маунт-Вильсон систематические спектральные наблюдения слабых галактик с целью определения их скоростей. Разработал специальную методику для фотографирования спектров слабых галактик на 100-дюймовом, а затем и на 200-дюймовом рефлекторах; в 1930-1957 определил лучевые скорости 620 галактик. Выполнил спектральные наблюдения большого числа сверхновых, бывших новых и слабых голубых звёзд, включая белые карлики. В 1961 году открыл комету (1961e), отличавшуюся высокой активностью на больших расстояниях от Солнца.

Камиль Фламмарион

Высшего образования не получил. С 1858 по 1862 года работал под руководством Леверье вычислителем в Парижской обсерватории, с 1862 по 1866 года работал при Бюро долгот, в 1876-1882 году был сотрудником Парижской обсерватории. Состоял редактором научного отдела журналов «Cosmos», «Siecle», «Magasin pittoresque».
Кроме астрономии, Фламмарион занимался проблемами вулканологии, земной атмосферы, климатологией. В 1867-1880 годах совершил несколько подъёмов на воздушных шарах с целью изучения атмосферных явлений, в частности атмосферного электричества.

Майкл Фарадей

Фарадей так и не сумел получить систематическое образование, но рано проявил любознательность и страсть к чтению. В магазине было немало научных книг; в позднейших воспоминаниях Фарадей особо отметил книги по электричеству и химии, причём по ходу чтения он сразу начал проводить простые самостоятельные опыты. Отец и старший брат Роберт в меру своих возможностей поощряли тягу Майкла к знаниям, поддерживали его материально и помогли изготовить простейший источник электричества - «Лейденскую банку». Поддержка брата продолжалась и после скоропостижной смерти отца в 1810 году.
Важным этапом в жизни Фарадея стали посещения Городского философского общества (1810-1811 годы), где 19-летний Майкл по вечерам слушал научно-популярные лекции по физике и астрономии, участвовал в диспутах. Некоторые учёные, посещавшие книжный магазин, отметили способного юношу; в 1812 году один из посетителей, музыкант Уильям Денс (William Dance), подарил ему билет на цикл публичных лекций в Королевском институте знаменитого химика и физика, первооткрывателя многих химических элементов Гемфри Дэви.
Открыл электромагнитную индукцию, лежащую в основе современного промышленного производства электричества и многих его применений. Создал первую модель электродвигателя. Среди других его открытий - первый трансформатор, химическое действие тока, законы электролиза, действие магнитного поля на свет, диамагнетизм. Первым предсказал электромагнитные волны. Фарадей ввёл в научный обиход термины ион, катод, анод, электролит, диэлектрик, диамагнетизм, парамагнетизм и другие.

Уолтер Питтс

Уолтер Питтс родился в Детройте 23 апреля 1923 года в неблагополучной семье. Он самостоятельно изучал в библиотеке латинский и греческие языки, логику и математику. В 12 лет он прочитал за 3 дня книгу «Principia Mathematica» и нашёл в ней несколько спорных моментов, о чём он и написал одному из авторов трёхтомника - Бертрану Расселу. Рассел ответил Питтсу и предложил ему поступить в аспирантуру в Великобритании, однако Питтсу было всего 12 лет. Через 3 года он узнал, что Рассел приехал читать лекции в Университете Чикаго и сбежал из дома.
В 1940 году Питтс знакомится с Уорреном МакКалоком и они начинают заниматься идеей МакКалока о компьютеризации нейрона. В 1943 году они опубликовали работу «Логическое исчисление идей, относящихся к нервной активности».
Питтс заложил основы революционного представления о мозге как о компьютере, что стимулировало развитие кибернетики, теоретической нейрофизиологии, компьютерных наук.

Владимир Андреевич Никонов

Учёный-самоучка без высшего образования, один из крупнейших советских ономастов. Почётный член Международного комитета ономастических наук при ЮНЕСКО (1972).
После гимназии он нигде не учился, занимаясь исключительно самообразованием. У Никонова, таким образом, не было высшего образования, аттестата о среднем образовании и свидетельства об окончании начальной школы.
Основные научные интересы в ономастике - русские фамилии, географические названия (топонимы), названия космических объектов (астронимы), клички животных (зоонимы). В различных советских энциклопедиях опубликовано более 300 статей и заметок Никонова. Читал лекции в 18 вузах СССР.

Борис Васильевич Кукаркин

Окончив школу, занимался самообразованием и в 18-летнем возрасте возглавил обсерваторию Нижегородского общества любителей физики и астрономии, пробыв на этом посту до 1931 г.
В 1928 г. обнаружил зависимость между периодом и спектральным классом затменных переменных звёзд.
В 1934 г. совместно с П. П. Паренаго установил статистическую зависимость между амплитудой вспышки и продолжительностью циклов между вспышками у переменных типа U Близнецов, что привело к предсказанию ими вспышки новоподобной звезды T Северной Короны.
Провел исследования кривых блеска, периодов и светимостей цефеид.

Виктор Степанович Гребенников

Российский энтомолог и апиолог, художник-анималист, специалист по разведению и охране насекомых, писатель. Заслуженный эколог России, член Международной ассоциации учёных-исследователей пчёл, а также член Социально-экологического союза и Сибирского экологического фонда.
Самоучка, не имел высшего образования.
В 1946 году был осуждён за подделку хлебных карточек (нарисовал их "от руки"), освобождён по амнистии 1953 года. С 1976 года работал в Новосибирске, в Сибирском НИИ земледелия и химизации сельского хозяйства. Создал в посёлке Краснообск Новосибирской области, где проживал, несколько микрозаповедников (заказников) для насекомых.
Всю свою жизнь посвятил изучению насекомых.
Умер 10 апреля 2001 в возрасте 73 лет.

Израиль Моисеевич Гельфанд

Основные труды Гельфанда относятся к функциональному анализу, алгебре и топологии. Один из создателей теории нормированных колец (банаховых алгебр), которая послужила отправным пунктом созданной им (совместно с М. А. Наймарком) теории колец с инволюцией и теории бесконечномерных унитарных представлений групп Ли, имеющей существенное значение для теоретической физики. Наряду с этим автор фундаментальных результатов в области теории обобщённых функций, занимался дифференциальными уравнениями, теорией топологических линейных пространств, обратными задачами спектрального анализа, квантовой механикой, динамическими системами, теорией вероятностей, приближёнными и численными методами и другими областями математики. Автор многочисленных работ по нейрофизиологии волевых движений, клеточной миграции в тканевых культурах, протеомике (классификации третичной структуры белков) и алгоритмизации клинической работы врачей.
Примечательно, что он является основоположником крупной научной школы, хотя сам не получил даже среднего образования.

Известные изобретатели мира создали много полезного для человечества. Их пользу для общества сложно переоценить. Многие гениальные открытия спасли не одну жизнь. Кто же они - изобретатели, известные своими уникальными разработками?

Архимед

Этот человек был не только великим математиком. Благодаря ему весь мир узнал, что такое зеркало и осадное орудие. Одна из известнейших разработок - архимедов винт (шнек), с помощью которого можно эффективно вычерпывать воду. Примечательно, что этой технологией пользуются по сей день.

Леонардо да Винчи

Изобретатели, известные своими гениальными идеями, не всегда имели возможность воплощать задумки в жизнь. К примеру, чертежи парашюта, самолета, робота, танка и велосипеда, появившиеся в результате кропотливого труда Леонардо да Винчи, еще долгое время оставались невостребованными. В то время просто не было инженеров и возможностей для реализации таких грандиозных планов.

Томас Эдисон

Изобретатель фонографа, кинескопа и телефонного микрофона был известнейшим В январе 1880 года он оформил патент на лампу накаливания, которая впоследствии прославила Эдисона на всю планету. Однако некоторые не считают его гением, отмечая, что изобретатели, известные своими разработками, трудились в одиночку. Что касается Эдисона, то ему помогала целая группа людей.

Никола Тесла

Великие изобретения этого гения были воплощены в жизнь только после его смерти. Все объясняется просто: Тесла был настолько что никто не знал о его работах. Благодаря стараниям ученого была открыта многофазная система электрического тока, что обусловило появление коммерческой электроэнергии. Кроме того, он сформировал основы робототехники, ядерной физики, информатики и баллистики.

Александр Грэм Бэлл

Многие изобретатели, известные своими открытиями, помогали сделать нашу жизнь еще лучше. То же самое можно сказать и об Александре Бэлле. Благодаря его люди смогли беспрепятственно общаться, находясь за тысячи километров друг от друга, и все - благодаря телефону. Бэлл также изобрел аудиометр - особый прибор, определяющий глухоту; устройство для поиска клада - прототип современного металлоискателя; первый в мире аэроплан; модель субмарины, которую сам Александр называл лодкой на подводных крыльях.

Карл Бенц

Этот ученый успешно реализовал главную задумку своей жизни: средство передвижения с мотором. Именно благодаря ему мы сегодня имеем возможность ездить на автомобилях. Еще одно ценное изобретение Бенца - двигатель внутреннего сгорания. Позже была организована компания по производству автомобилей, которая в наши дни известна во всем мире. Это Mercedes Benz.

Эдвин Лэнд

Этот известный французский изобретатель посвятил свою жизнь фотографии. В 1926 году ему удалось открыть новый вид поляризатора, в дальнейшем получившего название «Полароид». Лэнд основал фирму Polaroid и оформил патенты еще на 535 изобретений.

Чарльз Бэббидж

Этот английский ученый еще в девятнадцатом веке работал над созданием первого компьютера. Именно он назвал уникальный прибор вычислительной машиной. Поскольку в то время человечество не располагало необходимыми знаниями и опытом, старания Бэббиджа не увенчались успехом. Тем не менее, гениальные задумки не канули в лету: и Конрад Цузе смогли реализовать их в середине двадцатого века.

Бенджамин Франклин

Этот известнейший политик, писатель, дипломат, сатирик и государственный деятель был еще и ученым. Великие изобретения человечества, которые увидели свет благодаря Франклину, это и и гибкий мочевой катетер, и громоотвод. Интересный факт: Бенджамин принципиально не патентовал ни одно из своих открытий, поскольку считал, что все они - достояние человечества.

Джером Хал Лемелсон

Такие великие изобретения человечества, как факсимильный аппарат, беспроводной телефон, автоматизированный склад и кассета с магнитной лентой, были представлены широкой публике Джеромом Лемелсоном. Кроме того, этим ученым была разработана технология алмазного покрытия и некоторые медицинские приборы, помогающие при лечении онкологических заболеваний.

Михаил Ломоносов

Этот признанный гений самых разных наук организовал первый в России университет. Самое известное личное изобретение Михаила Васильевича - аэродинамическая машина. Она предназначалась для поднятия специальных метеорологических приборов. По мнению многих специалистов, именно Ломоносов является автором прообраза современных самолетов.

Иван Кулибин

Этого человека недаром называют ярчайшим представителем восемнадцатого столетия. Иван Петрович Кулибин с раннего детства интересовался принципами механики. Благодаря его труду мы сейчас пользуемся навигационными приборами, часами с будильником, вододействующими двигателями. Для того времени указанные изобретения были чем-то из разряда фантастики. Фамилия гения даже стала нарицательной. Кулибиным теперь называют человека, обладающего способностью делать удивительные открытия.

Сергей Королев

В сфере его интересов была пилотируемая космонавтика, авиатехника, конструирование ракетно-космических систем и ракетное вооружение. Сергей Павлович в значительной степени поспособствовал освоению космического пространства. Он создал космические корабли «Восток» и «Восход», зенитную ракету «217» и дальнобойную «212», а также ракетоплан, оснащенный ракетным двигателем.

Александр Попов

И радиоприемник именно этот русский ученый. Уникальному открытию предшествовали годы исследования природы и распространения радиоволн.

Гениальный физик и электротехник родился в семье священника. У Александра было еще шесть братьев и сестер. Уже в детстве его в шутку называли профессором, поскольку Попов был застенчивым, худым, нескладным пареньком, на дух не переносившим драк и шумных игр. В Пермской духовной семинарии Александр Степанович стал изучать физику по книге Гано. Его любимым занятием была сборка простых технических устройств. Полученные навыки в последующем очень пригодились Попову при создании физических приборов для собственных важнейших исследований.

Константин Циолковский

Открытия этого великого русского изобретателя позволили вывести аэродинамику и космонавтику на новый уровень. В 1897 году Константин Эдуардович закончил трудиться над аэродинамической трубой. Благодаря выделенным субсидиям, он рассчитал сопротивление шара, цилиндра и других тел. Полученные данные впоследствии широко использовал в своих работах Николай Жуковский.

В 1894 году Циолковский сконструировал аэроплан с каркасом из металла, однако возможность построить такой аппарат появилась только через двадцать лет.

Спорный вопрос. Изобретатель лампочки - кто он?

Над созданием прибора, дающего свет, работали еще в древние времена. Прообразом современных ламп были глиняные сосуды с фитилями из хлопчатобумажных нитей. Древние египтяне заливали в такие емкости оливковое масло и поджигали его. Жители побережья Каспийского моря использовали в аналогичных приспособлениях другой топливный материал - нефть. Первые свечи, сделанные в Средневековье, состояли из пчелиного воска. Небезызвестный Леонардо да Винчи усердно трудился над созданием однако первый в мире безопасный осветительный прибор изобрели в девятнадцатом столетии.

До сих пор не утихают споры о том, кому же присвоить почетное звание «Изобретатель лампочки». Первым зачастую называют Павла Николаевича Яблочкова, всю жизнь проработавшего электротехником. Он создал не только лампу, но и электрическую свечу. Последний прибор получил широкое распространение при освещении улиц. Чудо-свеча горела полтора часа, после чего дворнику приходилось менять ее на новую.

В 1872-1873 гг. российский инженер-изобретатель Лодыгин создал электрическую лампу в современном ее понимании. Поначалу она излучала свет тридцать минут, а после откачки воздуха из прибора это время значительно увеличилось. Кроме того, на первенство в изобретении лампы накаливания претендовали Томас Эдисон и Джозеф Сван.

Заключение

Изобретатели всего мира подарили нам множество приспособлений, делающих жизнь комфортнее и разнообразнее. Прогресс не стоит на месте, и если еще несколько столетий назад для реализации всех задумок просто не хватало технических возможностей, то сегодня воплотить идеи в жизнь гораздо проще.

Характеризуя Ивана Петровича Кулибина, энциклопедия Кирилла и Мефодия (КМ) сдержанно сообщает: «Российский механик-самоучка (1735-1818). Изобрел много различных механизмов. Усовершенствовал шлифовку стекол для оптических приборов. Разработал проект и построил модель одноарочного моста через р. Нева с пролетом 298 м. Создал «зеркальный фонарь» (прототип прожектора), семафорный телеграф и много др».

При чтении этого абзаца у неподготовленного человека возникает ощущение, что Кулибин был-таки довольно приличным изобретателем (вон, за ним числится и фонарь, и семафор и даже «много др.»). Но с другой стороны всего-навсего механик (типа слесаря) да еще и самоучка.

С высокоученым европейцем эпохи Возрождения рядом не поставишь.

Поэтому, нарушая традиции написания рефератов и научных статей, посвященных каким-либо персоналиям, начну не с биографических данных, а с загадки.

Итак, известно, что Иван Кулибин, родившийся на Волге и с детства видевший тяжелый труд бурлаков, изобрел самоходную баржу. Которая (внимание!) сама шла против течения реки, используя в качестве движущей силы само (вы не поверите!) течение реки.

Да-да, это не ошибка и не опечатка. Кулибин действительно создал баржу, которая используя только силу течения шла … против течения.

Это кажется невероятным. Невозможным. Противоречит базовым законам физики.

Судите сами: даже если добиться того, чтобы тяжелая баржа имела нулевой коэффициент трения о воду (что невозможно!), то судно в лучшем случае оставалось бы на месте. Не дрейфовало бы по течению в низовья реки.

А тут баржа своим ходом шла ВВЕРХ.

Это же просто вечный двигатель какой-то!

Парижская академия наук отказалась бы рассматривать такой проект, так как это невозможно, потому что невозможно никогда!

Но Кулибин-то не проект предоставил, а настоящую баржу. Которая при большом скоплении народа действительно была спущена на воду и НА САМОМ ДЕЛЕ, у всех на виду, шла против течения, не используя никаких внешних сил.

Чудо? Нет, реальность.

И теперь, когда вы это знаете, попробуйте сами (как никак мы жители XXI века, вооруженные знаниями и обласканные техническим прогрессом) сообразить, как механик-самоучка(!) XVIII века добился столь удивительного эффекта, используя самые простые и доступные каждому материалы.

Пока вы думаете, для обострения мыслительных процессов приведу несколько основополагающих принципов изобретательства. Разработанных, естественно, в XXI веке.

Техническое решение считается идеальным, если нужный эффект достигается «даром», без использования каких бы то ни было средств.

Техническое устройство считается идеальным, когда устройства нет, но действие, которое оно должно делать, выполняется.

Способ, которым осуществляется техническое решение, является идеальным, когда расхода энергии и времени нет, но требуемое действие выполняется, причем регулированно. То есть столько, сколько надо и только тогда, когда надо.

Ну и в завершение: Вещество, используемое в техническом решении, считается идеальным, когда самого вещества нет, но его функция выполняется в полном объеме.

Вам не кажется, что деревенскобородый мужик-лапотник, а точнее механик-самоучка Иван Кулибин умел находить именно ИДЕАЛЬНЫЕ решения? Невозможные с точки зрения Парижской академии наук?

В книге Александра Дюма «Граф Монте-Кристо» ярко живописуется, как титульный герой перехватил и исказил информацию, передаваемую при помощи семафорного телеграфа с испанского театра военных действий в Париж. Результатом стало обрушение биржи и грандиозное разорение одного из могущественнейших банкиров - врагов графа.

Ничего удивительного. Кто владеет информацией, тот владеет миром.

Хочется только подчеркнуть, что изобрел этот самый семафорный телеграф - Иван Петрович Кулибин.


Теперь о прожекторе.

Не забудем, что милостью ее императорского величества Екатерины II сын нижегородского купца-старовера Иван Кулибин был призван в столицу и там, в течение 32-х лет (с 1769 по 1801 год) заведовал механическими мастерскими Петербургской академии наук.

Петербург - город мореходный. А значит, подача световых сигналов в нем исключительно важна. Тут и маяки, ориентирующие суда и оберегающие их от попадания на мель, и передача информации с корабля на корабль…

До эпохи Кулибина суда для передачи сигналов использовали разноцветные вымпелы, поднимаемые на мачтах, и ручной семафор (лихой матросик с флажками). Понятно, что разглядеть эту красоту можно было только днем. На маяках ночью разжигали костры.

Но на деревянном судне открытый огонь слишком опасен, поэтому в море для освещения можно было использовать только свечу или фитиль, плавающий в плошке с маслом. Понятно, что мощность света от таких источников невелика и для передачи сигналов на сколь-нибудь приличное расстояние не годится. Так что ночью суда погружались во тьму и информационное молчание.

Изучив проблему, механик-самоучка Кулибин в 1779 сконструировал свой знаменитый фонарь с отражателем, дававший мощный свет при слабом источнике. Важность такого фонаря-прожектора в портовом городе трудно переоценить.

Виктор Карпенко в своей книге «Механик Кулибин» (Н. Новгород, изд-во «БИКАР», 2007 год) так описывает событие:

«Как-то в темную осеннюю ночь на Васильевском острове появился огненный шар. Он освещал не только улицу, но и Английскую набережную. Толпы народа устремились на свет, творя молитвы.

Вскоре выяснилось, что это светит фонарь, вывешенный знаменитым механиком Кулибиным из окна своей квартиры, которая помещалась на четвертом этаже Академии».

Фонари пользовались огромным спросом, но Кулибин был плохим предпринимателем и заказы ушли к другим мастерам, которые нажили на этом не одно состояние.

Автомобиль

Леонардо да Винчи считается первым в истории изобретателем самобеглой коляски. Правда, у флорентийца она предназначалась для военных целей и, как сейчас утверждают, явилась прообразом современного танка.

Устройство, со всех сторон защищенное «броней» из дерева (современных пуль и снарядов в средние века не знали), передвигалось за счет мускульной силы нескольких человек, которые сидели внутри и вращали рычаги. (Типа «кривой стартер»).

Увы, изучив чертежи Леонардо современные специалисты оценили изобретение так:

Дэвид Флетчер, британский историк танков:

«- Да, сначала кажется, что ничего из этого не выйдет. Там внутри должны быть люди, вращающие рукояти, чтобы завращались колеса и с места сдвинулась махина бог знает какой тяжести. Я бы сказал, что это физически почти невозможно.

Для того чтобы это могло двигаться, нужно поле боя ровное, как стол. Камень - и оно остановится. Нора крота - и снова остановка. Противник умрет от смеха раньше, чем эта штука до него доедет.

Но это только с первого взгляда. Со второго - солдаты (!) британской армии заметили, что в чертеже есть принципиальная ошибка.

Шестерни на колесах расположены неправильно, - сказал один из тех, кого посадили внутрь Леонардовского танка и заставили крутить рукояти. - При таком устройстве переднее колесо крутится назад, а заднее - вперед. Так что это нужно исправить - переставить шестеренки. Тогда оба колеса будут одновременно двигаться в одном направлении.»

Как видите, изобретение Леонардо содержало принципиальные конструкторские недоработки. Причем, даже после их устранения механизм мог использоваться только в лабораторных условиях на идеально ровной поверхности, какой в реальной жизни не найти.

Теперь взглянем на изобретения Ивана Кулибина.


В Политехническом музее Москвы хранится несколько уменьшенных копий самодвижущейся коляски. Таковые (не копии, а настоящие изделия) изготавливались в механических мастерских Петербургской академии наук, которыми руководил Кулибин, и довольно широко использовались для прогулок аристократов.

Сотрудники музея подчеркивают, что кулибинская самобеглая повозка имела все части современного автомобиля: коробку скоростей, тормоз, карданный механизм, руль, подшипники качения… Единственное сходство с Леонардовским изобретением - приводилась сия конструкция в движение тоже за счет человеческих мускулов. Водитель крутил ногами педали, его усилия раскручивали тяжелый маховик… и через короткий промежуток времени, велоколяска, отличавшаяся завидной грузоподъемностью, могла развивать приличную скорость. От водителя требовалось только твердо держать руль и поддерживать маховик в постоянном вращении.

Мосты

Устраиваясь под покровительство миланского герцога Людовико Сфорца, Леонардо позиционировал себя, как военный инженер.

«Я могу создать легкие прочные мосты, - говорил он, - которые будет легко перевозить в ходе преследования. Или, упаси господи, бегства от врага. Так же я придумал способ осады замков, при котором первым делом осушается ров с водой».

И герцог принял его на службу. Однако, как человек здравомыслящий, (энциклопедии сообщают, что при нем «Милан стал одним из сильнейших государств Италии, центром наук и искусств») поручил новому служащему не строительство мостов новой конструкции, а нечто гораздо более скромное. Он доверил Леонардо (Умеешь осушать? - Осушай!) провести дренаж для ванной комнаты герцогини.

Энциклопедия КМ сообщает:

«В 1770-х гг. Кулибин спроектировал деревянный одноарочный мост через Неву с длиной пролета 298 м (вместо 50-60 м, как строили в ту пору). В 1766 он построил модель этого моста в 1/10 натуральной величины. Она была испытана специальной академической комиссией. Проект получил высокую оценку математика Л. Эйлера, по модели Кулибина проверившего правильность своих теоретических формул».

Очень любопытно упоминание о том, что знаменитый Эйлер не проводил расчеты для русского самоучки, а по его модели проверял СВОИ расчеты. Умный был человек, понимал, что «практика - критерий истины».

Вопрос: а зачем, собственно, Кулибину понадобилось изобретать мост такой необычной формы? Слава Богу, конструкций мостов с древнейших времен существует множество…

Дело в том, что Санкт-Петербург - крупный порт. И до сегодняшнего дня он принимает суда большого тоннажа и водоизмещения. Для того, чтобы эти громадные суда могли входить в город, основные мосты Санкт-Петербурга сделаны разводными.

А одноарочный мост, который предлагал Кулибин, как бы парил над Невой, касаясь земли только в двух точках - на правом и на левом берегах.

ЕГО НЕ ТРЕБОВАЛОСЬ БЫ РАЗВОДИТЬ!

Мосты Кулибина, если бы их проект был принят, позволили бы океанским судам входить в порт не только ночами, а в любое время суток! И никаких затрат на обслуживание и ремонт разводных механизмов.


Часы

Общеизвестно, что столичная карьера Ивана Кулибина началась с того, что во время визита императрицы Екатерины II в Нижний Новгород, ей преподнесли изготовленные мастером часы. Размером они были с гусиное яйцо и вмещали (помимо собственно часов) ни много ни мало, как театр-автомат, музыкальную шкатулку и механизм, который все этим управлял. Всего «яичная фигура», которая теперь является жемчужиной в коллекции Эрмитажа, содержит 427 деталей.


Вот как описываются эти удивительные часы в книге Виктора Карпенко:

«Они отбивали каждый час, половину и даже четверть часа. По завершении часа в яйце отворялись створчатые дверцы, открывая золоченый чертог. Против дверей стояло изображение гроба Господня, в который вела затворенная дверь.

По сторонам гроба стояли два воина с копьями. Через полминуты после того, как отворялись двери чертога, являлся ангел. Дверь, ведущая к гробу, раскрывалась, и стоящие воины падали на колени. Появлялись жены-мироносицы и слышался сопровождаемый звоном церковный стих «Христос воскресе!», исполнявшийся трижды.

Во второй половине дня ежечасно исполнялся уже другой стих: «Воскрес Иисус из гроба». В полдень часы играли гимн, сочиненный самим Кулибиным. Фигурки ангелов, воинов и жен-мироносиц были отлиты из золота и серебра».

Часы, созданные Кулибиным, хранятся в кладовых Эрмитажа и, чтобы их увидеть, нужно приложить специальные усилия (договариваться, оформлять пропуск и т.п.). Гораздо доступнее знаменитые «Часы-павлин», изготовленные в Европе и выставленные в одном из залов Эрмитажа.

Это поистине грандиозное сооружение, которое даже в просторном Эрмитаже занимает значительную часть выделенного ему помещения.

Разумеется, как все произведенное в Европе, часы "Павлин” являются модной занимательной игрушкой и, заодно, произведением искусства. В "чудесном саду”, выполненным в натуральную величину, на золоченых ветвях дуба расположились павлин, петух, сова в клетке и белки. При заводе специальных механизмов фигуры птиц приходят в движение. Сова вертит головой, павлин распускает хвост и поворачивается к публике своей самой красивой частью (то есть тылом), петух кукарекает.

Плюс ко всем наворотам имеется и циферблат (в шляпке гриба), взглянув на который можно без всяких выкрутасов, чисто по-человечески узнать сколько время.

Часы были приобретены князем Потемкиным у английской герцогини Кингстонской, которая в 1777 году на собственном корабле с грузом художественных ценностей, вывезенных из Англии, приплыла в Санкт-Петербург.

У часов был только один недостаток: герцогиня вывезла их из Лондона в разобранном виде и, они более десяти лет лежали в кладовой, теряя свои части и детали. Например, из 55 граненых хрусталей, лежащих на основании часов, к 1791 году уцелел лишь один.

Светлейший князь Потемкин-Таврический, потративший на диковинку немалые деньги, призвал Кулибина и попросил «оживить бедных птичек».

Часы действуют до сих пор.

Часы различных конструкций Кулибин создавал во множестве: карманные, суточные, перстневые, часы с гуслями…

Но рассказать хочется еще лишь об одних. В 1853 году в журнале «Москвитянин» появилась заметка, подписанная неким П.Н. Обнинским. Он сообщал, что у него в доме находятся часы, созданные Кулибиным, и просил прислать комиссию для освидетельствования.

Чем же так интересно было это устройство?

Во-первых, часы были астрономическими. То есть показывали ход планет, затмения Луны и Солнца. Кроме того, часы указывали дату (день, месяц), а особая стрелка отмечала високосные годы.

Во-вторых, на минутной стрелке были устроены мелкие часы, в гривенник размером, которые не имея никакого сообщения с общим механизмом часов и не имея завода, показывают, тем не менее, время очень верно.

Фактически, здесь мы опять сталкиваемся с «вечным двигателем», изобретенным Кулибиным.

Не оскудела еще земля русская народными талантами. Чего стоят одни изобретатели - самоучки. Так, изобретатель из Северодвинска Сергей Муракин сконструировал из обычного бытового пылесоса уникальный гидропневмодвигатель. Еще один интересный "самоделкин" фермер из Архангельска, который разводит "породистых" червяков — для производства биогумуса.

Можно ли стать в наше время как минимум региональной, а как максимум мировой знаменитостью в нынешней России самостоятельно, в одиночку, не пользуясь особой государственной поддержкой? Ну или благоволением, скажем, крупных финансово-промышленных структур? Отошло ли время самоучек-самоделкиных, левшей и кулибиных? Спору нет — Сколково и другие подобные научные и высокотехнологичные структуры стране пользу приносят, и немалую. Но…

Лет десять назад Pravda. Ru впервые написала о ставшем впоследствии знаменитым (как раз после наших публикаций) самодеятельном изобретателе Сергее Муракине из Северодвинска. По результатам испытаний его агрегата, сконструированного из обычного пылесоса "Буран" (еще советского образца), ученые тогда сделали вывод: гидропневмодвигатель может использоваться не только в качестве привода-движителя в устройствах различного назначения, но и как генератор на электростанциях малой и средней мощности.

Лауреат Нобелевской премии академик Жорес Алферов сказал тогда про его изобретение: "Как работает этот самый гидропневмодвигатель, мы не понимаем… Но он, несмотря на это, все-таки работает!". Чуть позже обладающий лишь средним специальным образованием северодвинский самородок Муракин (закончил он машиностроительный техникум еще при СССР) запатентовал уникальную ветровую электростанцию, аналогов которой во всем мире нет.

Когда Сергей Михайлович подавал заявку на участие в международном конкурсе "Глобальная энергетика" (одним из инициаторов учреждения которой и был, кстати, академик Ж. Алферов), члены оргкомитета, пять нобелевских лауреатов, множество академиков и профессоров, пришли в недоумение: да ведь изобретения, хоть и работают, и испытания проходят, но все-таки законам "общепринятой" физики противоречат!

Как уже писала Pravda. Ru, в середине 2000-х Сергей Муракин разработал уникальную технологию преобразования вращательного движения в возвратно-поступательное, и снова привел в недоумение ученых. Суть: при трансформации вращательного движения в возвратно-поступательное (и наоборот) в устройстве Муракина напрочь отсутствуют такие "незаменимые", казалось бы, штуковины, как кривошип, шатун и коленчатый вал! Не может быть — но… все работает!

Автор этих строк в не раз в те времена лично общался с самоделкиным из Северодвинска — ведь благодаря нашим публикациям он, по большому счету, и приобрел известность, к нему по электронной почте посыпались вопросы. И предложения — в основном из-за границы. В частности, из США, Германии и Японии. Деньги сулили громадные…

Но Сергей Михайлович не раз рассказывал: его сокровенная мечта — чтобы изобретения начали работать "в Отечестве своем". Ветровая электростанция к тому времени уже подходила к стадии реализации в одной из уральских областей России. Свои мудреные железяки он возил в поездах, в обычном плацкарте, за свой счет — никто особо не хотел вкладываться в них, пока не будет показана их реальная отдача…

Недавно, наткнувшись на фамилию Муракина на одном из научно-технических интернет-форумах, решил ему позвонить. И… вдова сказала, что не так давно он ушел из жизни. Говорит, что устал пробивать со свои изобретения, за которые японцы и немцы предлагали ему огромные деньги. Но ни одно свое изобретение он "на сторону" так и не продал! Ну, а на родине они так и не пригодились…

Куда более счастливой оказалась судьба другого нашего героя, Григория Иванова из Архангельска. Этот простой архангельский фермер прямо в самом центре города, в подвале одного из вполне официальных учреждений взялся разводить червей для производства биогумуса.

Сейчас Григорий Иванов успешный бизнесмен, глава фермерского хозяйства. Центральный офис компании расположен сейчас в самом центре Архангельска в здании бывшей котельной. И опять же, когда я дозвонился до героя своей же публикации в Pravda. Ru, услышал печальное: бюрократические препоны и дороговизна долго не давали развернуться.